Thank you to the University of California (our co-sponsor) and all the presenters and attendees for helping to make the DSI's Inaugural Workshop a huge success!
Day 1 | Day 2 | Posters
Day 1: August 7, 2018
Session 1: Applications
- Yuriy Ayzman (LLNL): Transfer Learning Applications toward ICF Capsule Manufacturing
- Anh Tran (UCLA): Bayesian Model Averaging for Estimating the Temperature Distribution in a Steam Methane Reforming Furnace
- Jian-Qiao Sun (UCM): A Neural Network–Evolutionary Computational Framework for Aircraft Engine Remaining Useful Life
- Cheng Ding (LBL): Deep Learning Based Predictive Modeling of EHR Data for Suicide Prevention
- Yong Han (LLNL): Application of Machine Learning, Computer Vision and Data Analytics for Materials Science
Session 2: Cognitive Simulation
- Brian Spears (LLNL): Learning-Based Predictive Models: A New Approach to Integrating Large-Scale Simulations and Experiments
- Luc Peterson (LLNL): Machine Learning Aided Discovery of a New NIF Design
- Harsh Bhatia (LLNL): Enabling Multiscale Simulations of RAS Biology using Machine Learning
Session 3: Neural Networks
- Jayaraman J. Thiagarajan (LLNL): Modeling Time-Varying Data: Attention, Generative Models and Beyond
- Brian Bartoldson (LLNL): An Interpretable Multimodal Retrieval Tool
- Kelli Humbird (LLNL): Deep Jointly-Informed Neural Networks
- Ryan Goldhahn (LLNL): Robust Decentralized Signal Processing and Distributed Control of Autonomous Sensor Networks
Session 4: Uncertainty Quantification
- Jim Gaffney (LLNL): Calibration of Radiation-Hydrodynamics Simulations using Data from Inertial Confinement Fusion Experiments
- Kathleen Schmidt (LLNL): Parameter Subset Selection for Mixed-Effects Models
- Peter Hatfield (University of Oxford, LLNL): Machine Learning and Algorithmic Approaches in ICF Capsule Design
Session 5: Space/Other Applications
- Michael Schneider (LLNL): Probabilistic Modeling to Measure Dark Energy
- Adam Kellerman (UCLA): Real-Time Data-Assimilative Hindcast and Forecast of Earth's Electron Radiation Belts: Research to Applications
- Andreas Zoglauer (UCB, BIDS): Lessons Learned from Applying Machine Learning to the Data Analysis Pipeline of the COSI Telescope
- Benjamin Nachman (LBL): Deep Learning with the Largest Scientific Dataset: Modern Machine Learning for High Energy Physics
Session 6: Biological Sciences Applications
- Paul Gamble (Lab41): Biollante
- Gerald Quon (UCD): Deep Domain Adaptation Networks Predict Changes in Cell State Under Stimulus
- Aram Avila-Herrera (LLNL): Search Strategies for Antimicrobial Resistance Associated Genes
Day 2: August 8, 2018
Session 7: Computer Vision
- Rushil Anirudh (LLNL): Interpreting Deep Neural Networks using Graph Signal Analysis
- Shusen Liu (LLNL): Visual Exploration of Latent Spaces in Deep Neural Network Models
- Luke Jaffe (LLNL): Remote Sensor Design for Automated Visual Recognition
- Laura Kegelmeyer (LLNL): Evolution of Machine Learning for NIF Optics Inspection (OI)
Session 8: Methods
- Anna Matsekh (LANL): Machine Learning for Memory Reduction in the Implicit Monte Carlo Simulations of the Thermal Radiative Transfer
- Thomas Desautels (LLNL): Controlling a Sepsis Simulation with PILCO, a Model-Learning Controller
- Tenzing Joshi (LBL): Detection and Identification of Radiological Sources with Non-Negative Matrix Factorization
- Gerald Friedland (LLNL, UCB): One Bit Matters: Explaining Adversarial Examples as the Abuse of Redundancy
Session 9: Applied Statistics
- Bruno Sanso (UCSC): Inferring Release Characteristics from an Atmospheric Dispersion Model
- Giuliana Pallotta (LLNL): Improving Predictions of Radiological Surface Contamination Uncertainty via an Ensemble of Simulations
- Abel Rodriguez (UCSC): Spherical Factor Analysis for Binary Data: A Look at the Conservative Revolt in the US House of Representatives
- William Dawson (LLNL): Bayesian Sensor Fusion in Centralized and Decentralized Networks
Session 10: Precision Medicine
- Ya Ju Fan (LLNL): Distinguishing between Normal and Cancer Cells Using Autoencoder Node Saliency
- Brenden Petersen (LLNL): Deep Reinforcement Learning and Simulation as a Path toward Precision Medicine
- Stewart He (LLNL): Semi Supervised Feature Learning for Tumor Growth Prediction
- Kevin McLoughlin (LLNL): Deep Learning to Accelerate Cancer Drug Discovery
Session 11: Security
- Eddy Banks (LLNL): ADAPD – Advanced Data Analytics for Proliferation Detection
- Mateusz Monterial (LLNL): Machine Learning Approach to Improving Performance with Portal Monitors
- Felipe Mejia (Lab41): Challenges in Secure Machine Learning
- Margaret Arno (LLNL): A Multimodal-Deep Learning System for the Retrieval of Open Source Data on Nuclear Proliferation Activities
Session 12: Tools and Infrastructure
- Dani Ushizima (UCB, BIDS): Deep Learning for Image Search: Characterization, Retrieval and Ranking of Multi-Modal Data
- Amanda Minnich (LLNL): Utilizing Container Technology to Streamline Data Science
- Tim Moon (LLNL): Scalable Deep Learning Training for Scientific Applications
- Daniel Fedor-Thurman (LLNL): HPCrypt: End-to-End Data Protection for HPC
Posters
- Brandyn Ward (UCSC): A Comparison of Generative Models for the Detection and Identification of Gaseous Chemical Plumes in Hyperspectral Imagery
- Connor Amorin (LLNL, UMass Amherst): A Hybrid Deep Learning Architecture for Classification of Microscopic Damage on NIF Optics
- Bin Chen, Yufang Jin, Brown Patrick (UCD): An Automatic Mapping of Tree Crops Planting Age using Landsat Time Series Stacks and Google Earth Engine
- Timothy La Fond, Geoff Sanders, Christine Klymko, Van Emden Henson (LLNL): An Ensemble Framework for Detecting Community Changes in Dynamic Networks
- V.M. Castillo (LLNL), B. Kustowski (LLNL), Y. Mubarka (LLNL, UCSD): Asynchronous Method for Active Learning on HPC for Efficient Exploration of Complex Systems
- Jason Bernstein, Kathleen Schmidt, David Rivera, Nathan Barton, Jeffrey Florando, Ana Kupresanin (LLNL): Bayesian Comparison of Material Strength Model Predictiveness
- Xuanyu Mao, Antoine M. Snijders, Jian-Hua Mao, Hang Chang (LBL): Biomedical Data to Knowledge: An integrative study for brain tumor research
- Danny Yeap, Paul Hichwa, Maneeshin Y. Rajapakse, Fauna Fabia, Nicholas J. Kenyon, Cristina E. Davis (UCD): Chemical Detection using Differential Mobility Spectrometry Plots
- Rebecca K Lindsey (LLNL), Nir Goldman (LLNL, UCD), Sorin Bastea (LLNL), Laurence E. Fried (LLNL): ChIMES: Machine-Learned Force Fields for Quantum-Accurate Reactive Simulation
- Haoyu Niu, Tiebiao Zhao, YangQuan Chen (UCM): Data Science in Agriculture Enabled by Low-Cost Remote Sensing Drones: Opportunity and Challenges
- A.R. Gonçalves, A.P de Oliveira, P. Ray, B. Soper, D. Widemann (LLNL); J. Nygard, M. Nygard (Cancer Registry of Norway): Deep Entity Embeddings for Cancer Survival Prediction
- J. O’Leary (UCB), K. Sawlani (Lam Research Corp.), A. Mesbah (UCB): Deep Learning for Semiconductor Defect Classification
- Alexander M. Petersen, Emmanuel M. Vincent, Anthony LeRoy Westerling (UCM): Discrepancy in Scientific Authority and Media Visibility of Climate Change Scientists and Contrarians
- J. Kallman, D. Domyancic, B. Gallagher, M. Jiang, A. Toreja (LLNL): DISTLR [Directed Intelligent System for Targeted Lagrangian Relaxation] First Results in KULL
- Samuel N. Araya, Anna Fryjoff-Hun, Andreas Anderson, Joshua H. Viers, Teamrat A. Ghezzehei (UCM): Estimating Soil Moisture from Unmanned Aerial Vehicle and Machine Learning
- N.E. Marks, M. Fitzgerald (LLNL), S.P. LaMont (LANL), J.D. Borgardt (Juniata College): Exercising National Nuclear Forensics Libraries – Details on the Creation and Implementation of the Galaxy Serpent 3 Data Set
- Naoya Maruyama (LLNL), Nikoli Dryden (LLNL, UIUC), Tim Moon (LLNL), Brian Van Essen (LLNL), Mark Snir (UIUC): Generalized Distributed-Memory Convolutional Neural Networks for Large-Scale Parallel Systems
- Camila Zanette, Caitlin C. Bannan, Christopher I. Bayly, Josh Fass, Michael K. Gilson, Michael R. Shirts, John D. Chodera, David L. Mobley (UCI): Learned Chemical Perception of Force Field Typing Rules using Monte Carlo Sampling
- Chyi-Shin Chen, Akash Narani, Todd Pray, Deepti Tanjore (LBL): Machine Learning Can De-Risk Bio-Based Production: Predictive Modeling in R
- H. Guillon, C.F. Byrne, B. Lane, S. Sandoval-Solis, G. Pasternack, H. Dahlke (UCD): Machine Learning Meets Eco-Hydraulics – Exhaustively Mapping the Channel Geometry of California Rivers and Streams
- Matteo Busi, Aditya K. Mohan, Alex A. Dooraghi, Kyle M. Champley, Harry E. Martz (LLNL); Ulrik L. Olsen (Technical University of Denmark): Material Characterization using Spectral X-ray CT
- Jian Hao Miao, Janesh Chhabra, Yu Zhang (UCSC): Medium-Term Wind Power Forecasting via Recurrent Neural Networks
- Bradley Harris, Jiali Zhang, Austen Bernardi, Hai Yu, Lan Na, Bo Chen, Xi Chen, Gang-Yu Liu, Roland Faller (UCD): Molecular Dynamics Simulation of Tetrasaccharide Assemblies in the Context of 3D Nanoprinting
- Steven A. Magana-Zook (LLNL): Nuclear Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination
- Jinlong Wu (LBL, Virginia Tech), Jianxun Wang (Virginia Tech), Heng Xiao (Virginia Tech): Physics-Informed Machine Learning for Data-Driven Turbulence Modeling
- Rafael Zamora-Resendiz, Silvia Crivelli (LBL): Protein Structure Classification using Spatial Graph Convolutional Neural Networks
- D. Rivera, J. Bernstein, K. Schmidt, N. Barton, A. Kupresanin, J. Florando (LLNL): Quantifying Uncertainty in Materials Strength
- Sam Ade Jacobs, Nikoli Dryden, Tim Moon, Brian Van Essen, Stewart He, Jonathan Allen (LLNL): Scaling Deep Learning for Cancer Drug Discovery on HPC Systems
- Derek D. Jensen, Donald D. Lucas, Katherine A. Lundquist, Lee G. Glascoe (LLNL): Sensitivity of a Bayesian Source-Term Estimation Model to Spatiotemporal Sensor Resolution
- Youngsoo Choi, Bill Arrighi (LLNL): Space-Time Reduced Order Model for Dynamic Systems
- Xingchen Yu, Abel Rodriguez (UCSC): Spherical Latent Factor Model
- Claudia Wehrhahn (UCSC), Abel Rodriguez (UCSC), Christopher Paciorek (UCB): The NIMBLE Environment for Statistical Computing
- Daniel Laney, Frank Di Natale, Kathleen Dyer, Joseph Eklund, Rebecca Haluska, Nathan Greco, Esteban Pauli, Matthew Larsen, Walt Nissen, Jessica Semler (LLNL): The Workflow Project at LLNL
- Sisi Song, Abel Rodriguez, Gordon Keller, Mircea Teodorescu (UCSC): Trajectory Planning for Autonomous Vehicles for Optimal Environmental Monitoring
- Bogdan Kustowski, Jim Gaffney, Brian Spears, Gemma Anderson (LLNL): Transfer Learning for the Calibration of the ICF Simulations
- V. Dumont (UCB), T. Bowen (UCB, SSL), R. Roglans (UCB, SSL), J. Wurtele (UCB), D. Budker (UCB, LBL): Understand the Magnetic Pulse of Cities