A Neural Network-Evolutionary
Computational Framework for Aircraft
Engine Remaining Useful Life

Jian-Qiao Sun David LaredoRazo
Professor, Ph.D., PE. Graduate Student

Department of Mechanical Engineering
School of Engineering
University of California
Merced, CA 95343, USA



Outline

¥ A Data Science Framework
¥ Remaining Useful Life (RUL) of Aircraft Engine
¥ Data Preprocessing

¥ Main Result

.+ A simple neural network structure with a few
hidden layers and a reasonable number of
neurons at each layer can be highly effective,
provided that the data model parameters
Including the window size, window stride and
RUL label, number of hidden layers and number
of neurons in each hidden layer are optimized



The Framework

¥ A Data Science Framework
.+ A multi-layer perceptron as base regressor
.+ An evolutionary algorithm for searching for
the optimal data model parameters



RUL of Aircraft Engine

¥ Maintenance of Mechanical Systems
.+ Scheduling
1+ Costly
.+ Demand for efficiency and reliability

¥ Intelligent Prognostics and Health

Management (PMH)
.+ Maintenance based on current system health
.+ RUL can be estimated based on history data



CMAPS Dataset

¥4 C-MAPS
114 inputs
. 1IFuel flow + 13 health parameters
1+ 21 outputs available to public
.+ The output Is time-series
.+ Each entry Is an engine cycle

¥ The Goal
.+ Estimate the number of cycles the engine can
run before failure



CMAPS Dataset

C-MAPSS
Dataset FDOO1 FDOO2 FDOO3 FDOO4
Train Trajectories 100 260 100 248
Test Trajectories 100 259 100 248
Operating Conditions | 1 6 1 6
Fault Modes 1 1 2 2




Data Preprocessing

¥ Window size
¥ Window stride

¥ RUL label for the early stages of the engine



Data Preprocessing

¥ Shaping Data for Training
1 Time-windows of size n,,
1 Window moving stride n,

¥ A piecewise linear degradation model is used

for the RUL (R_) of the engines
1 R, Is used as the upper limit for the piecewise
linear degradation model

¥ Normalization _
.+ The min-max method to the range [-1, 1]

¥ Data for Testing
1 A time window Is generated from the last n,
data instances




Shaping Data

¥ Different sensors sometimes do not present much
variance or convey redundant information
.+ Discard
.+ Inthe end, only 14 sensor readings out of 21 are
considered for this study

11(2,3,4,7,89,11,12,13,14,15,17,20,21)
¥ The raw measurements are then used to create the
strided time windows with window size n,, and
window stride n,

¥ For the training labels R, is used at the early stages
and then is linearly decreased

¥ Normalized to be within the range [-1,1] using the
min-max normalization.

H=o1 N “min(x)
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Data Preprocessing

Raw sensor measurements
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RUL Piecewise Linear Degradation
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Figure 2: Piecewise linear degradation for RUL.



Performance Metrics

¥ Root Mean Squared ¥ Health Score
Error (RMSE)
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N is the total nurber of testing data samples

d=¥! y is the error between the estimatedues ¥ and the actualalues y for each
engine within the test set

s, (d) penalizes late predictions more than early predictions since usually late predic
lead to more severe consequences in fields such as aerospace.



Neural Networks
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The Neuron

Linear: f(vj):a!vj

Nonlinear: f (v,)=——
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NN Architectures: Shallow MLP

RMSE RHS
Tested Architecture | Min. Max. Avg. STD | Min. Max. Avg. STD
Architecture 1 15.86 17.26 16.47 043 | 598 10.06 7.33 1.11
Architecture 2 15.56 17.15 16.35 0.65 | 6.52 20.11 4.50 4.50
Architecture 3 16.07 19.18 17.67 1.12 | 6.91 19.18 12.78 4.72
Architecture 4 15.32 19.99 17.63 148 | 5.93 24 13.54 6.28
Architecture 5 15.70 17.24 1637 049 | 484 857 6.35 1.25
Architecture 6 15.58 16.92 1595 039 | 544 7.65 6.38 0.68

Table 2: Results for different architectures for subset 1, 100 epochs

Layer Shape Activation Additional Information
Hidden Layer 20 ReLLU L2 regularization factor = 0.2
Output Layer 1 Linear

Table 3: Proposed Neural Network architecture



Time Window Processing

¥ In multivariate time -series based problemanore information can be generally
obtained from the temporal sequence of data as compared with the multivariate
data point at a single time stamp.

¥ Let n, denote the size of the time window, for a time window with a striden =1,
all the past sensors values within the time window are collected and putgether to
form a feature vector x.

¥ We propose not only thause of a moving time window, but also a strided time

window that updates »_ elements at the time instead of.

¥ The use of a strided time window allows for the regressor to take advantage not o
of the previous information available, but also to control the ratio at which the
algorithm is fed with new information.

¥ With the usual time window approach only one point is updated for every new timu
window, on the contrary, the strided time window allows forupdating n_, points at
the time, allowing for the algorithm to catch newer information with fewer
iterations, furthermore, the information contained in the strided time window is
likely more rich than the one contained in a time winow with stride of 1.



Piecewise Linear Degradation

¥ Itis usually impossible to evaluate the precise health condition and estimate the
RUL of the system at each time step without ancaurate physics based model.

¥ For this popular dataset, a piecewise linear degradaion model has been proposed
The piecewise linear degradation model assumes that the engines have a constal
RUL label in the early cycles and then th&®UL starts degrading inearly until it
reaches.

¥ The piecewise linear degradation approach is used for this work, in here we deno
the value for theRUL at the early stages aR..



Optimal Data-Related Parameters

¥ Data-related parameters v=(n_,n,R) have a large impact on the performance of the
regressor

¥ Framework for picking the optimal combination of the data-related parameters n,, n,

and R while being computationally efficient
¥ Procedure

o Assume the integer ranges for the parameters specific to C-MAPSS dataset:
n,! #b$ n! #1103 and R 1001405

o b is dependent upon the specific subset.

o Let X(V) be the training/cross-val/test sets parametrized by Vv and used by the
MLP to perform the RUL estimation. Let f(v)=¢__(X(V)). Here we propose to
fine tune Vv such that

min f (v)

v z3
o Evolutionary algorithm is the natural choice for the optimization.

FD001 FDO002 FDO003 FDO004
b| 30 20 30 18

Table 4: Allowed values for b per subset



True Optimal Data-Related Parameters

The size of C-MAPSS dataset and the bounded search space of v allow for an
exhaustive search to be performed in order to find the true optimal data-related
parameters.
Consider subsets FD002 and FD002 an exhaustive search is performed to find the
true optimal values for v.

o The MLP is only trained for 20 epochs.

Dataset | argmin v min f(v) argmaxwv max f(v) Function evals.
FD001 | [30,1,125] 17.43  [19,1,97] 80.92 7500
FD002 | [20,1,135] 36.89 [19,10,109] 76.80 2500

Table 5: Exhaustive search results for subsets FD001 and F002.



EA for Optimal Parameters

¥ Differential evolution (DE) is chosen
o Python implementationin the scipy package
o Run DE for 30iterations with a population size ofl2,reasonable given the

size of the search space of
0 TheMLP is trained for just 20 epochs
I For two reasons:1) the use of the minibatch in the training process

allows for a speed up in the convergencg) most important is the
assumption that parameters that lead to lower score Vwaes in the
early stages of thdraining are more likely to provid e better
performance when trained for the total epochs
¥ Given the similarities between subsets FD001/FD003 and FD002/FD004 we have
decided to just tune theDE for subsets FD001 and FD(®

Population Size Generations Strategy MLP epochs

12 30 Best1Bin 20
Table 6: Differential Evolution hyper-par Dataset | argmin v min f(v) Function evals.
FDOO1 | [30, 1, 128] 17.78 372
FD002 | [20,2,134] 37.65 372

Table 7: Data-related parameters for each subset obtained with Differential Evolution.



ANN-EA RUL Estimation Algorithm

Algorithm 1 ANN-EA RUL estimation Framework

Input: Initial set of data-related parameters v € Z", Raw training/testing data X and
training labels y

Output: Optimal set of data-related parameters v*

1: Choose regressor architecture (ANN, SVM, linear/logistic regression, etc).

2: Define f(v) as in Section3.3.

3: Optimize f(v) using the preferred evolutionary algorithm, i.e. differential evolution,
evolutionary strategies, genetic algorithm, ete, using the proposed guidelines from Sec-
tion 3.3.2.

4: Use v to train the regressor for as many epochs as needed.




Tested NN Architectures

Appendix A. Tested Neural Network Architectures

Architecture 1

Layer Shape Activation Additional Information

Fully connected 30 ReLLU L2 regularization factor = 0.2
Fully connected 10 ReLLU L2 regularization factor = 0.2
Fully connected 1 Linear

Table 12: Proposed Neural Network architecture 1

Architecture 2

Layer Shape Activation Additional Information

Fully connected 50 ReLU L2 regularization factor = 0.2
Fully connected 20 ReLU L2 regularization factor = 0.2
Fully connected 1 Linear

Table 13: Proposed Neural Network architecture 2

Architecture 3

Layer Shape Activation Additional Information

Fully connected 100 ReLLU L2 regularization factor = 0.2
Fully connected 50 ReLLU L2 regularization factor = 0.2
Fully connected 1 Linear

Table 14: Proposed Neural Network architecture 3



Tested NN Architectures

Architecture 4

Layer Shape Activation Additional Information

Fully connected 250 ReLU L2 regularization factor = 0.2
Fully connected 50 ReLU L2 regularization factor = 0.2
Fully connected 1 Linear

Table 15: Proposed Neural Network architecture 4

Architecture 5

Layer Shape Activation Additional Information
Fully connected 20 ReLU L2 regularization factor = 0.2
Fully connected 1 Linear

Table 16: Proposed Neural Network architecture 5

Architecture 6

Layer Shape Activation Additional Information
Fully connected 10 ReLU L2 regularization factor = 0.2
Fully connected 1 Linear

Table 17: Proposed Neural Network architecture 6



Performance Evaluation

Dataset n,, n. R,
FDO001 30 1 12

FDO002 20 2 134
FDO003 30 1 128
FDO004 18 2 134

Table 8: Data-related parameters for each subset as obtained by DE.

RMSE RHS
Data Subset | min max avg STD | min max avg STD
FDO001 14.87 15.08 1494 0.06 | 3.65 399 386 0.10
FD002 28.67 31.60 29.54 0.91 | 49.15 92.52 61 13.52
FDO003 14.55 16.21 15.05 052 3.8 454 417 0.22
FD004 32.54 37.703 34.08 1.43 4835 7933 59.60 10.26

Table 9: Scores for each dataset using the data-related parameters obtained by DE.



Performance Evaluation

RMSE RHS
Data Subset | min  max avg STD | min max avg STD
FDO001 17.58 1856 17.82 0.29 | 8.26 0.18 859 0.28
FDO002 20.48 3192 30.15 0.75| 65.83 104.37 75.73 11.54
FDO003 17.35 19.99 1820 0.72 | 6.25 16.09 K27 2.86
FD004 32.91 3728 3445 1.41 4890 77.93 59.60 9.65

Table 10: Scores for each dataset using the single set of data-related parameters.



Performance Evaluation - RMSE
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Figure 3: Comparison of RMSE results for different sets of data-related parameters.

¥ FDO001 and FDO003 share parameters
¥ FDO002 and FD004 share parameters



Performance Evaluation - RHS
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Figure 4: Comparison of RHS results for different sets of data-related parameters.

¥ FDO001 and FDO003 share parameters
¥ FDO002 and FD004 share parameters



Performance Comparison

Method Crinis
ESN trained by Kalman Filter (Peng et al., 2012) 63.45
Support Vector Machine Classifier (Louen et al., 2013) 29.82
Time Window Neural Network (Lim et al., 2016) 15.16
Multi-objective deep belief networks ensemble (Zhang et al., 2016) | 15.04
Deep Convolutional Neural Network (Babu et al., 2016) 18.45
Proposed method with n,, = 30, ns =1 and R, = 128 14.87

Table 11: Performance comparisons of the proposed method and the latest related papers
on the C-MAPSS dataset.



Concluding Remarks

¥ A novel framework for predicting the RUL of mechanical
components

.+ The method Is general and scalable

.+ It makes use of a strided moving time window to generate
the training and test sets, a shallow MLP to make the
predictions of the RUL and an evolutionary algorithm
(DE) to find the best data-related parameters that
optimize the scoring functions used in this study

¥ The proposed framework is accurate and computationally
efficient

.+ Suitable for applications that have limited computational
resources such as embedded systems.

¥ Furthermore, a comparison with other state-of-the-art

methods shows that the proposed method is the best
overall performer
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