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Abstract

A Bayesian approach is used to calibrate a strength model to Taylor
Impact data.

Introduction

Quantifying uncertainty in model predictions is a motivating factor. Many
experiments depend on simulations to estimate variables that can not
be measured directly, thus prompting the need to determine the
uncertainty in their predictions.
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In shaped charge experiments values such as temperature rise and strain rate must be
Inferred from models. Image from Science and Technology Review 1998.
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Hopkinson bar stress-strain curves for Ta at various
temperatures and strain rates.

Traditionally stress-strain data such as that presented here is used for
calibration of materials strength models. However, such data is limited
to strain rates of ~ 103 1/s, in order to get more reliable prediction of
strength at higher strain rates consideration of additional experimental
data Is needed.
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Taylor Impact Test

Strength data at higher strain rates generally does not measure the
stress-strain response directly.
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Qol in Taylor impact experiment as a function
of Impact velocity.

Taylor impact experiments provide information on
strength at strain rates ~ 10* 1/s.

Strength Models

Predict the stress-strain response of a material, range in complexity
from simple such as Johnson-Cook to relatively complex such as
MTS.

Oflow = f(x;, 0)
0,c ={4,B,C,m,n}

HMTS — {qi' Pi> 050, Y0i» Ois - }

x; = {velocity}

Bayesian Approach With Surrogate
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JC model cross-validation. MTS model cross-validation.
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Posterior distribution for MTS model
parameter g_|I.

Posterior distribution for JC model parameter
A, showing Gaussian behavior.

Propagation of Uncertainty

Posterior distribution sampled and propagated through the surrogate for
an uncertainty estimate.
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Uncertainty propagation through the MTS
Model. Hashed lines indicate 95 % credible
Interval

Uncertainty propagation through the JC
Model. Hashed lines indicate 95 % credible
Interval

Conclusions

» Greater variability in MTS model than JC, likely due to increased
complexity in the MTS model relative to JC.

* Project combines knowledge base of materials science, statistics, and
HPC.

» Future work: will focus on combining disparate data sets into the
calibration routine.

* Future work: calibration using cylinder profiles at constant impact
velocity.

GP based surrogate models useful tool in estimating uncertainty in materials strength
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