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Machine Learning Meets Eco-Hydraulics

Exhaustively mapping the channel geometry of California rivers and streams
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HOW MUCH WATER DOES
A RIVER NEED?

Answering this question is critical for freshwater ecosystems and depends
on a flow-form-function nexus : the ecological functions of a river are
linked with its geometry and the magnitude and frequency of its flow.

PRELIMINARY
PREDICTIONS

The best classifiers have widely
different spatial predictions.

SACRAMENTO BASIN

TRAINING PREDICTIVE MODELS s 7 mmw
WITH A WIDE-NET APPROACH e ==

[ e [ 044018 - 1185824
1 B 1.165825 - 1.387631
— _IETO32 - 16800438

elevation

Value ®
e High - 431532

e supervised learning and classification
e n labels : stratified random sampling and field surveys (10°-102 m)
e p > n predictors : ~300, remote sensing (104-10* m), estimated with HPC

« A Random Forest model is able
to predict large scale patterns.
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A P o T e T  resampling scheme : 20 repeats of 5-fold cross-validation
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But, the spatial repartition of channel types is unknown and is needed * Dbest classifiers are selected with paired t-tests
state-wide.
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NZV : near-zero variance predictors removed
Corr : highly correlated predictors removed

PCA : Principal Component Analysis
ICA : Independent Component Analysis

Results of the training process
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Random Forest predictions capture the large-scale spatial organization of channel types
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