ADAPD:

Advanced Data Analytics for Proliferation Detection

DSI Workshop – August 8, 2018 Eddy Banks LLNL - Jim Brase

LLNL – Eddy Banks

LANL - Jim Smith

SNL – Danny Rintoul

ORNL - Phillip Bingham

ADAPD – Goal: Early Detection of Low-Profile Proliferation

ADAPD will build science-based capabilities to *predict* and *detect* proliferation observables and *characterize* associated activities.

Data Science to the rescue:

- Emerging analytic methods that integrate physics-based simulation models with experimental data have demonstrated significant increases in prediction performance for complex physical modeling applications.
- ADAPD will draw upon and extend these emerging methods to integrate physics and subject-matter-expert models with DOE/NNSA testbed data to improve prediction of proliferation activities.
- These methods will provide new capabilities for detection of low-profile proliferation observables in noisy, limited data environments with quantified uncertainties.

Advances in data science enable new approaches to low-profile proliferation detection

Train with combined facility data and SME-built simulations

Re-train the top layers using limited observable data

Prediction of observables in the new environment

Query the model with new process state and environmental inputs

ADAPD – R&D Objectives

Approach: Predictive models of proliferation observables driving model-based detection

Objective 2 – Multi-phenomenology detection for complex/ varied environments

Objective 3 – Model validation and transfer to new Low-Profile environments

Predictive models integrated into multisource analytics are essential to limited data applications

Testbeds

Data Streams

Analytic Capabilities

- SPE
- REDC/HIFR
- ..

- Acoustic, seismic
- Optical
- Facility power
- Materials procurement and shipping patterns
- Patterns of life
- ..

 Integrating direct and indirect data in the context of a predictive model will enable detection in the noisy, limited data environments and extend capabilities for quantitative estimates of rates and uncertainties

To detect Low-Profile Proliferation, ADAPD will address key data science gaps

Predictive models integrating physics and data-driven approaches

Collaboration with DP efforts of LLNL and LANL

Multi-source data integration

- Deep multimodal learning methods
- Sparse and noisy data tensor models
- SME model-based transfer learning

Scalable network and graph analytics

- Pattern of life analytics
- Temporal activity learning
- Rare event and anomaly learning
- Learning from sparse data

Uncertainty quantification in data-driven systems

- Models learned from data
- High dimensional wave forms. spectra, images
- Accountability from inference back to data

November 2 2013 (marathon day)

ADAPD will be driven by a set of science questions

Objective 1: Predictive modeling —Can we predict the broad range of observables associated with Low-Profile Proliferation?

- Can we combine physics, SME, and data-driven models to accurately predict a broad range of observables?
- What observations and experiments on existing testbeds are needed to develop and validate predictive models?

Objective 2: Multi-phenomenology detection and characterization — Can we use multiple observables to detect and characterize proliferation activities?

- Can we use predictive models to improve performance with noisy and sparse data?
- Can we quantify uncertainty in detection results that are based on multiple uncertain observables?

Objective 3: Validation and extension to new environments – Can we transfer a learned model to new geographical locations, different infrastructures,

- What tests should be performed on existing testbeds to best validate and calibrate models?
- Can we combine models for proliferation activities involving multiple facilities and sites?

Industry and university partnerships are an important component of the ADAPD plan

Carnegie Mellon University

Universities

- Basic R&D in machine learning algorithms and methods
- Much of our data can be shared
- Output is prototype algorithms and – most importantly - students

<u>Industry</u>

- Industry-standard opensource computing frameworks and tools
- Innovative computing technology and architectures
- Large open data sets

- Application to nonproliferation
- Work with full spectrum of data and models
- Full access to testbeds and activities
- R&D in targeted nonproliferation modeling and analytics

The ADAPD R&D Roadmap focuses on building cross-cutting and sustainable capabilities

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	
Predictive modeling	Predictive model development – baseline scenarios		Predictive model development -expanded observables - both direct and indirect			Full UQ integration with integrated models		 Apply & evaluate performance for partially unknown proliferation scenarios 	
Multi- ohenomenology detection	 Detection and characterization development – baseline methods 		Detection and characterization development – inverse inference methods		quantifica	quantification for inverse inference		Detection & characterization performance enhancement in high-noise, sparse and missing data environments	
Transfer to new environments	approa	ed model		oility of learned new data sets o	transfe on models	nd evaluate trability of learne s to partially unki data environme	d trans	and evaluate sferability of learned els to new testbeds & ronments	
Testbed and Experiment Partnerships	trainin •	orative testbed e g set developme Collaborative experiment 2	nt • Eva	ndirect data plar aluate testbeds nsfer experiment	and experime	ection campaigns	 Validate pre 	dictive models against ange of testbed	
Data Management and curation	Assess existingCatalog and existing data	curate	Catalog ar new data s		•	niform cataloging and control acros			

ADAPD – Questions?

