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𝑔𝑚,𝑗𝒔𝑚 + 𝐯 = 𝐒𝐠𝑗 + 𝐯.

Where,

• 𝑔𝑚,𝑗 = 𝐶𝐵Δ𝑇𝛾𝑚,𝑗 is the abundance

• 𝐬𝑚 = 𝜏𝑎(𝝀)𝛼𝑚(𝝀) ∗ 𝑅𝐹(𝝀) is the chemical 

signature

• 𝐯 = 𝐿off 𝝀 ∗ 𝑅𝐹(𝝀) + 𝑟 𝝀 + 𝑛 𝝀 is the error 

imposed by the clutter, transmittance linearization, 

and sensor noise, respectively

Hyperspectral imagery data is gathered using a 

hyperspectral sensor, which is a spectrometer 

specifically engineered to measure the radiance of 

incoming electromagnetic waves across many 

(typically several tens to hundreds) equidistant, 

narrow (0.01𝜇m−0.1𝜇m) spectral bands. The data and 

image are arranged in such a way to form a cube: the 

pixels (spatial dimensions) of the image are 

represented by the 𝑥 and 𝑦 coordinate axes, while the 

spectral dimension is expressed through the 𝑧-axis 

(Figure 1). 

We focus on comparing a class of semi-supervised 

generative methods as they are the most applicable 

(and most used) for realistic data scenarios in the 

remote sensing of gaseous plumes through 

hyperspectral imagery. The methods we compare 

within this class are three regression modelsꟷspectral

matched filter (SMF), endmember selection (EMS), 

and least absolute shrinkage and selection operator 

(LASSO)ꟷand one Bayesian modelꟷBayesian

adaptive spline surfaces (BASS). In our validations 

through fitting these methods on two semi-synthetic 

hyperspectral images, we find that the LASSO model 

provides the most robust inference, closely followed 

by the SMF model adapted through an elliptically 

contoured generalized likelihood ratio test (EC-GLRT) 

filter.

Figure 1: example of the data cube representation for hyperspectral 

imagery data where each image slice (𝑧-axis) represents a sampled 

spectra for the same imaged region (𝑥 and 𝑦 axes).

Generative Methods
We assume the linear model for our generative 

methods with 𝐯~𝑁 𝟎, 𝚺𝑥 through mean shifting each 

of our pixel observations, 𝐱𝑗
∗ = 𝐱𝑗 − 𝝁𝑥, and using the 

dominant mode rejection (DMR) estimator of [2] to 

robustly estimate 𝚺𝑥
−1. 

The first of the three regression methods we use is 

the endmember selection (EMS) method,

ො𝑔𝑚,𝑗
(𝑂𝑆𝑃)

= 𝒅𝑇𝑷𝐱𝑗 = 𝒅𝑇𝑷𝒅𝑔𝑚,𝑗
+ 𝒅𝑇𝑷𝐯.

Which attempts to bolster the desired signal, 𝒅, in the 

provided spectral chemical library, 𝐒, by applying a 

matched filter and projecting out the rest of the library, 

𝐔, through the ordinary least squares (OLS) 

projection operator, 𝑷 = 𝐈 − 𝐔(𝐔𝑇𝐔)−1𝐔𝑇.

Secondly, the spectral matched filter (SMF) method 

uses the weighted least squares estimator for each of 

the regression coefficients:

ො𝐠𝑗
(𝑆𝑀𝐹)

= 𝐒𝑇𝚺DMR
−1 𝐒

−1
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−1 𝐱𝑗 .

If 𝚺𝑥
−1 departs from Gaussianity, we use the 

elliptically-contoured generalized likelihood ratio test 

(EC-GLRT) filter proposed by [3] to recover closer to

optimal results in the presence of heavily non-linear 

clutter,
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=
(𝜈 − 1)

𝜈 − 2 + 𝐱𝑗
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−1 𝐱𝑗
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−1 𝐒
−
1
2𝐒𝑇𝚺DMR
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Here, 𝐯 is assumed to be distributed as a 𝑡-
distribution with 𝜈 = 𝒪(𝐾) degrees of freedom (DOF).

The last regression method we use is the least 

absolute shrinkage and selection operator (LASSO) in 

which we seek to minimize

min
𝐠𝑗
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𝑔𝑚,𝑗 ,

for each of our regression coefficients where 𝜆𝑗 is the 

penalization coefficient for the 𝑗th pixel.

We then use a standard K-means clustering algorithm 

to provide a non-parametric decision boundary to 

classify each of our calculated regression coefficients 

as either coming from noise (clutter) or signal (gas). 

We assume the cluster that is larger and has mean 

nearest zero to be the noise cluster (Figure 2).

We use two semi-synthetic images to evaluate the 

performance of our methods. The first image (Figure 

1) is of resolution 128 × 700 (𝐽 = 89,600 pixels) across 

𝐾 = 85 spectral bands. The second image (Figure 3) 

is from the MIT Lincoln Laboratory challenge image 

set of 2014. This image is of resolution 150 × 320 (𝐽 =
48,000 pixels) across 𝐾 = 129 spectral bands and 

contains three chemical plumes. Two metrics are used 

to assess the performance of our methods on the 

images: the accuracy (ACC) and Matthew’s 

correlation coefficient (MCC). These results are 

presented in Tables 1 and 2. We also use combined 

pixel classification masks to visualize pixel inference 

with respect to the original

Figure 3: Mean spectra (right) and plume truth locations (left) for the 

“GID_Targ_Mix_JH” image provided in the MIT Lincoln Lab 

hyperspectral challenge set.

Model ACC MCC

SMF 0.9940 0.9707

EMS 0.9940 0.9707

LASSO 0.9986 0.9927

BASS 0.9690 0.8355

Model ACC MCC

SMF 0.2992 0.0848

EMS 0.2031 0.0426

LASSO 0.6796 0.1282

BASS 0.0974 0.0295

Tables 1 and 2: ACC and MCC performance metrics for the fit of our 

methods to the Benchmark image (left) and the “GID_Targ_Mix_JH” 

MIT challenge image (right).

We use the linear radiative sensor signal model 

presented in [1] to model the measured radiance 

across all 𝐾 spectral bands at a particular 

hyperspectral pixel, 𝑗 ∈ {1, … , 𝐽}, given by the 𝐾 length 

vector 𝐱:

Discussion
LASSO provides the most robust inference across 

both images studied with the EC-GLRT adaptation of 

the SMF following close behind. The EC-GLRT filter 

provides better inference for plume 1 of the challenge 

image than LASSO. Additionally, SMF requires less 

computation time (hundreds of times faster) than 

LASSO and should be used when time and 

computational resources are limited. BASS’s variable 

selection properties are lacking, performing the worst. 

Figure 4: Combined classification masks for each method fitted to the 

challenge image where five prediction classifications exist: (1) ``T:B, 

P:B", correctly predicted background pixel, (2) ``T:B, P:G", false-

positive, (3) ``T:GA, P:GB", incorrect gas species, (4) ``T:GA, P:GA", 

correct gas species, and (5) ``T:G, P:B", false-negative.
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Figure 2: Histograms of the fitted coefficients across all pixels resulting 

from the SMF model. The K-means clustering algorithm is used to 

predict the clustering (pixels) of the noise signal, with mean 

corresponding to the red-dashed line, and chemical signal, mean 

corresponding to the blue-dashed line. 

Lastly, we use a Bayesian adaptive spline surface 

(BASS) method [4],

𝑥𝑖𝑗 = 𝑓 𝐬𝑖 + 𝜖𝑖 , 𝜖𝑖 ∼ 𝑁 0, 𝜎2 ,

𝑓 𝐬𝑖 = 𝑎0 + ෍

𝑚=1

𝑀

𝑎𝑚𝐵𝑚(𝐬𝑖) ,

𝐵𝑚 𝐬𝑖 =ෑ

𝑧=1

𝑍𝑚

𝑔𝑧𝑚[𝑐𝑧𝑚(𝑠𝑣𝑧𝑚 − 𝑡𝑧𝑚)]+
𝛼 .

image. Figure 4 contains these masks for the 

challenge image.


