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Our Motivation:

corrections A7'to
RANS Reynolds stress
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d RANS modeled Reynolds stresses are known to be unreliable for many flows.
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d LES/DNS simulations are still infeasible for many industrial flows.
 Is it possible to employ existing LES/DNS database to enhance the RANS
simulations?
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Objective and Approach
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[ The prediction performance depends on
the choice of the training flows.
 In real applications, the true quantities
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(2) Identification of Mean Flow Features
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Conclusions

In this work, we proposed a physics-informed machine learning (PIML)
== RANS approach to predict RANS modeled Reynolds stresses discrepancies by utilizing
DNS database. The potential impacts include:

=== DNS 3 Utilizing current high-fidelity simulations database to improve the accuracy
== P|ML of RANS simulations

1 Assisting turbulence modelers to derive better RANS models

 Inspiring other data-driven modeling approaches in computational mechanics
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