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Conclusions

The objective of this work is to demonstrate that the RANS simulated Reynolds

stress of a new flow can be improved via our PIML framework with existing

LES/DNS database. Three essential parts of our PIML framework is: (1)

invariant representation of Reynolds stresses discrepancies as outputs; (2)

identification of invariant mean flow features as inputs and (3) construction of

a machine learning model to discover the functional mapping from inputs to

outputs of training data.

Reynolds Averaged Navier-Stokes Equations:

Hub of RANS models

Our Motivation:

❑ RANS modeled Reynolds stresses are known to be unreliable for many flows.

❑ LES/DNS simulations are still infeasible for many industrial flows.

❑ Is it possible to employ existing LES/DNS database to enhance the RANS 

simulations?

(1) Representation of Reynolds Stresses as Responses

(2) Identification of Mean Flow Features

Integrity Basis of

(3) Construction of Regression Functions

Random Forest Neural Network
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In this work, we proposed a physics-informed machine learning (PIML)

approach to predict RANS modeled Reynolds stresses discrepancies by utilizing

DNS database. The potential impacts include:

❑ Utilizing current high-fidelity simulations database to improve the accuracy

of RANS simulations

❑ Assisting turbulence modelers to derive better RANS models

❑ Inspiring other data-driven modeling approaches in computational mechanics

RANS DNS PIML
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(3) t-SNE: 

Minimize:

A Priori Assessment
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❑ The prediction performance depends on 

the choice of the training flows.

❑ In real applications, the true quantities 

of the test flow are usually unknown.

❑ We use statistical metrics to assess the 

prediction confidence a priori.


