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Current drug discovery is slow, costly, & high failure

e It takes 16 years
and over $1
billion to develop
a new drug.

* Nine out of ten
compounds fall
In clinical trials.

The ATOM Consortium seeks to
accelerate this process
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ATOM will accelerate cancer drug discovery by integrating HPC, machine
learning and pharmaceutical science

LLNL provides HPC faclilities, @ oK° — -
machine learning scientists, and e
data infrastructure. Announcing #ATOMscience: collaborators aim

to cut preclinical #cancer drug discovery from

. | .
GSK contributes “dark” experimental 6 years to 1 gsk.to/2ySSQEP #GoBoldly

data from past discovery projects,
pharmaceutical expertise.

UCSF and FNLCR provide cancer
specialists and laboratory facilities.
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Many assays are performed during drug discovery
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Presenter
Presentation Notes
It costs a lot of money and time to synthesize compounds and run assays on them. This is a large fraction of the expense of current drug discovery.


We are building machine learning models to replace many assays

Models use chemical structure features to predict compound properties:

» Efficacy:
 How does the compound affect the function of a disease-related target?
* What concentration is needed to achieve a therapeutic effect?

o Safety:
* Does the compound interact with off-target proteins that cause adverse effects?
« If so, at what concentration does it cause these effects?
 What is the therapeutic window?

* Pharmacokinetics:
 How well is the compound absorbed into the body?
 What dose is needed to achieve the desired concentration?
 How quickly is the compound metabolized and eliminated?
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Many of our models predict bioactivity assays

Bioactivity assays measure 100 e .
%inhibition or %activation at 5 Al o B
one or more concentrations 5 T 3 . . |
Compute IC., or EC,, by fitting = 4 e e
. . . = X T
logistic curve to activity at 5-20 g g C
concentrations S 25 -
S S '
Reported values often >
censored. if 50% conc outside 10° 10° 10" 10 10 10°  10° 10 107 107 10" 10" 10t 10
’ [Concentration] / [ICEG] [Concentration] / [ECBD]

measured range.

Thus most published models
are classifiers: is bioactivity
above some threshold?.

Geoff Williams & Gary Mirams, DOI: 10.1016/j.vascn.2015.05.002
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Modeled data are negative logs of XC50s: pIC50 or pEC50.



Classification model performance

* We trained neural network models to
predict categorical results for 30 safety

assays.

 Used DeepChem package from
Stanford (https://deepchem.io) with
graph convolution features.

o Classification performance of NN
models was almost always better than
SVM models used internally at GSK.
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Presentation Notes
Classification may be an inherently easier problem, especially when you have censored data


Regression model performance

* We built DeepChem graph

convolution regression models to
predict results of 84 liability assays.

« Data was split by scaffolds into
training, validation & test sets.

 Tuned learning rate and number of
epochs for best performance on
each validation set.
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Factors affecting regression model performance

* Model performance is

strongly correlated with
the spread of activity
values in the dataset.
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 Dataset size was also
Important.
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 To make better models,
we need data from a
more diverse set of
compounds.
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Structural diversity and functional diversity

Two kinds of diversity are required so that machine
learning models can generalize to novel compounds:

 Structural diversity: The variety of chemical structures
represented in a compound set.

* Functional diversity: The range of bioactivities measured for the
set of compounds.
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Structural diversity is extremely important for building ML models, because we need them to generalize to a wide variety of compounds.



Many bioassay compound sets lack structural diversity

o Assay datasets :
iInclude many GSK —

compounds . Wﬁ%ﬁm
synthesized for e [
terminated drug @ £
discovery programs.
 Many of these =
compounds are
derived from small
sets of lead

compounds => less
structural diversity
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Presentation Notes
The heatmaps shown here represent clustering of compounds from two terminated programs using a distance metric based on maximum common substructure (MCS) size.


Structural diversity affects functional diversity and model
performance

o Atarget inhibition assay was run
against four sets of compounds. = A
|
]
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Three sets were lead optimization c
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series for specific programs; the none
other was a diverse set from
screening panels.

* Models trained on the diverse set
predicted IC50’s for the optimized
sets reasonably well; but not vice
versa.
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When evaluating pharma data, it’s important to ask “why was this assay run?”



Expanding compound diversity through active learning

Predict assay
Train and test models values and <j & :
on compoundsin uncertainties for
data lake ] compounds in

virtual library

- Select
compounds with
greatest
D8 ¢ Add new assay data uncertainties,
to data lake and synthesize them
retrain models - and run assays
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More work in progress

e Physics-based features for
bioactivity modeling

e Uncertainty quantification for
active learning

 Generative models to create
optimized chemical structures

* Integration of ML predictions
with physiologic models
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Fig. 1. Diagram of the assay system. Dose-inhibition curves of drugs I.



Conclusions

« ATOM'’s active machine learning approach will make drug
discovery faster and more cost-effective.

e Diversity in compound datasets is the most important factor for
building accurate models.

» Close integration of our machine learning team with GSK’s drug
development experts and UCSF’s cancer research faculty will
facilitate success.

 The models and tools we develop will have broad impact for all
drug development and will ultimately save lives.
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