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Talk Summary

1. Motivation
2. Automated Production of New ICF Designs

3. Uncertainty Decomposition in Surrogate Building
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1.Motivation

* Inertial Confinement Fusion (ICF) is one of the key pathways
to nuclear fusion as a clean, renewable power source

* National Ignition Facility (NIF) world’s largest laser and
premier facility for achieving ICF

* Many milestones reached, but reaching ignition has proved
challenging — leading to interest in exploring a wider
parameter space of experiment designs
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The “Designer’s Algorithm”

Think of a physical principle (e.g. concept of using a shock wave
to increase adiabat)

Simulate a minimal working design that incorporates this
principle

Using a physical understanding of the implosion, change design
incrementally to improve performance

Repeat N times

End when desired performance reached, or no obvious
improvement
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The “Designer’s Algorithm”

Think of a physical principle (e.g. concept of using a shock wave
to increase adiabat)
Simulate a minimal working design that incorporates this
principle
Using a physical understanding of the implosion, change design
incrementally to improve performance
Repeat N times
End when desired performance reached, or no obvious
improvement
Humans are really good at understanding problems
Computers are good at repeating things multiple times



“The Surprising Creativity of Digital Evolution”
(Lehman et al., 2018)

* Evolutionary algorithms can often produce new and unexpected
solutions to problems

* Tic-tac-toe memory bomb, robot that found it could walk on
elbows, robot that flips instead of jumping...

* For ICF we would like to find any interesting new designs, or
convince ourselves that none are possible (c.f. 2020 goal)




Increasing Interest in Algorithmic
Approaches to Finding New Designs

* Peterson+2017 (LLNL) found a new  “fomes = e
class of NIF designs by optimizing o I
over a machine learning based
surrogate =

e Baltz+2017 used “Optometrist ) Ij‘;
Algorithm” to find unexpected )
confinement regime at Tri Alpha T
Energy
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2. Automated Design

* Interested in finding an algorithm to take you from
absolutely no idea what a design would look like, to a
working design

* ICF as an optimisation problem — wish to maximise yield
within constraints of what designs possible to field

* Design space considered in Peterson+2017 is 9D - design
space of absolutely everything is even bigger

* Investigate use of meta-heuristics — specifically genetic
algorithms
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Design Space Considered

Investigate space of robust low convergence designs for
NIF-like configurations

Design is permitted DT gas (p>10mg/cc), DT ice and CH in 5
different sections and otherwise almost no restrictions
Fixed thermal drive with Gaussian pulse shape

1D implementation in Hyades - radiation hydrodynamics
simulation code for HED experiments, Lagrangian, average
atom LTE ionization, no magnetic field, SESAME EQOS and
opacities...

Not modelling hohlraum (putatively gold) or plasma-laser
interactions

Run on SCARF at Central Laser Facility
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Genetic algorithms

 Population of designs

* Fitness of each design is evaluated (based on simulated yield)
* Pairs of parents crossover to produce offspring

e Offspring receive mutations

* New generation formed
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3. Surrogate Building

* Once basic design produced, can then investigate using
surrogates (see Peterson talk)

* Use machine learning for cheap predictions in large
parameter space

* Investigate modelling the “Simplest” ICF capsule design with
~103 simulations in 5D

* Model space with heteroscedastic sparse gaussian process
framework described in Almosallam+2015,2016,
Gomes+2018; GPz, developed for photometric redshifts for
NSF-DOE project the Large Synoptic Survey Telescope
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H

Uncertainty
Decomposition

High model uncertainty
due to lack of data

Uncertainty from lack of training data in part of parameter
space (“freedom in fitting GP”)
Uncertainty from intrinsic degeneracy (“variance of GP”)
Uncertainty from error bars on input parameters
(“uncertainty followed through”)
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Conclusions

* |ICF capsule designs can be produced “from scratch” by
genetic algorithms with little/no assumptions about what
designs should look like

* Exploration of “Simplest” ICF design

* Decomposition of uncertainty on surrogate models of ICF
yield

* Meta-heuristics and surrogates together can produce new
classes of design that can then be explored in greater detail
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