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Precision medicine as a control problem

Traditional precision medicine Proposed vision
Classify then treat Dynamic, feedback control
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= Viewed as a classification task = Viewed as an optimal control task
= Therapies are static and non- = Therapies are dynamic and
adaptive adaptive

— Dependent upon patient trajectory

q u 24l
Lawrence Livermore National Laboratory NVYSE -
LLNL-PRES-751582 inistrat

National Nuclear Security Admini tios



The need for simulation

= Many control approaches use existing data to retrospectively learn control policies
= Simulation enables virtual experimentation: going beyond what has been tried

= Recent advances in optimal control have enabled learning controllers for complex, high-
dimensional simulations

Learning controllers using...

_ Clinical Data ~ | 4 Biological Simulation

Able to explore new
interventions and/or
combinations

Scope Limited to what'’s already
of interventions been tried

Interpretability Limited by statistical power Limited only by
of interventions of existing data computation

Dimensionality Low-dimensional, discrete  High-dimensional,
of interventions (e.g. 1 — 2 drugs, 3 doses) continuous

Dynamics : : : :
Typically static Dynamic, adaptive
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Sepsis agent-based simulation — Demo
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Reinforcement learning (RL)

Given an
observation
choose the

action

expected to maximize
the cumulative

reward

RL agent

learns by inter-
acting with the

environment

observation
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observation

Problem Formulation: Observation Space selion

reward

Observation Space

. -

Cytokine level + cell counts Aggregaff? ! F
at each grid point cell cour = -~
o Size: RIOIX101X21XN Size: RZ
Clinically unrealistic with CIinicaﬂQ la l* .
today’s technology blooduests
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observation

Problem Formulation: Action Space action
reward
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observation

Problem Formulation: Reward Signal action

reward

= The simulation naturally provides only sparse, binary rewards:
life/death
Toutcome = 44 [heal] — A_[die]

= To aid learning, we added two terms to the reward signal

1. Potential-based reward shaping term

. Helps guide the RL agent toward “good” states without altering the optimal
i
PONCY Ty = A¢ (damage(s) — damage(s’))

2. A penalty for taking actions
. Regularizer; promotes conservative actions

12 = —4qllally

= Final reward signal: 7(s,a,5") = Toutcome + 79 + 72
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Unique challenges of the sepsis environment

Failed to solve using human experience,
genetic algorithms, and classify - control
approaches

Challenge “Atari 2600

High-dimensional state

High-dimensional actions v

Sparse rewards sometimes

Long time horizons

Computationally expensive

Unsolvable by humans

Stochastic None None H

LNa NSNS L

Each episode has different dynamics
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Training the DRL agent

= Environment is “solved” by 2,500 episodes
= Distinct “phases” of learning
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Evaluating the learned policy

Count ]

Performance

Mortality rate under learned policy
— Trained patient: 46% =2 0%
— Across 500 patients: 49% - 0.8%
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= Clinical insight
— IL-1 (pro-inflammatory) is unregulated
early and suppressed late
— Suppression comes later for patients
with larger initial infections
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Next steps: Improving clinical plausibility

= Tradeoff between controllability and clinical relevance

Aspect Next step
Clinically implausible Clinically plausible
Observability Remove infection and
damage from state
Observation Add 3 hr observation
delay delay
Observation Decrease to
frequency observation every 6 hr
Action set Identlfy_eX|st|ng
mediators
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Long-term vision: Closed-loop control system

Patient
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DRL-informed
control policy
https://openclipart.org/
https://www.mediware.com/home-care/blog/new-legislation-help-home-infusion-patients/
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Thank you!
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