Deep reinforcement learning and simulation as a path toward precision medicine

DSSI Workshop 2018

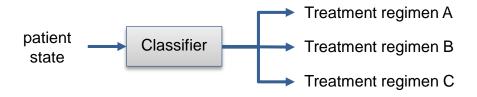
Brenden Petersen, Jiachen Yang, Will Grathwohl, Chase Cockrell, Claudio Santiago, Thomas Desautels, Gary An, Dan Faissol

Precision medicine as a control problem

<u>Traditional precision medicine</u> <u>Classify then treat</u>

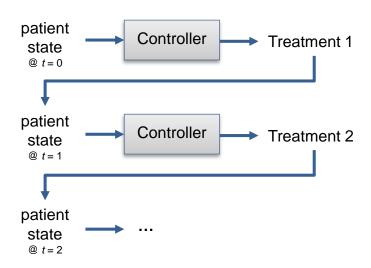
"...the ability to classify individuals into subpopulations that differ in their susceptibility to a particular disease or their response to a specific treatment."

- National Research Council



- Viewed as a classification task
- Therapies are <u>static</u> and <u>non-</u> <u>adaptive</u>

<u>Proposed vision</u> Dynamic, feedback control



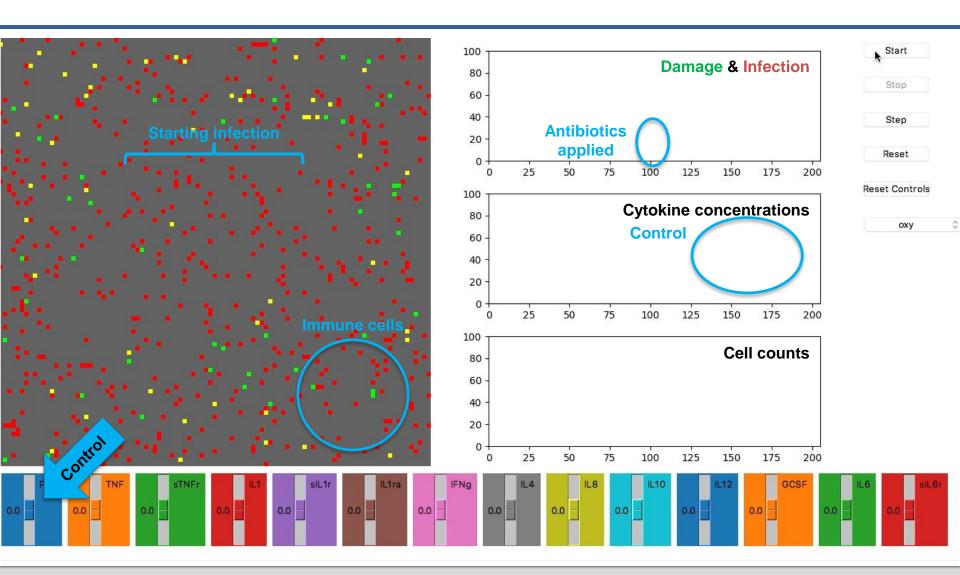
- Viewed as an optimal control task
- Therapies are <u>dynamic</u> and <u>adaptive</u>
 - Dependent upon patient trajectory

The need for simulation

- Many control approaches use existing data to retrospectively learn control policies
- Simulation enables virtual experimentation: going beyond what has been tried
- Recent advances in optimal control have enabled learning controllers for complex, highdimensional simulations

	Learning controllers using		
	Clinical Data Biological Simulation		
Scope of interventions	Limited to what's already been tried	Able to explore new interventions and/or combinations	
<i>Interpretability</i> of interventions	Limited by statistical power of existing data	Limited only by computation	
<i>Dimensionality</i> of interventions	Low-dimensional, discrete (e.g. 1 – 2 drugs, 3 doses)	High-dimensional, continuous	
Dynamics of interventions	Typically static	Dynamic, adaptive	

Sepsis agent-based simulation – Demo



Reinforcement learning (RL)

observation

choose the

action

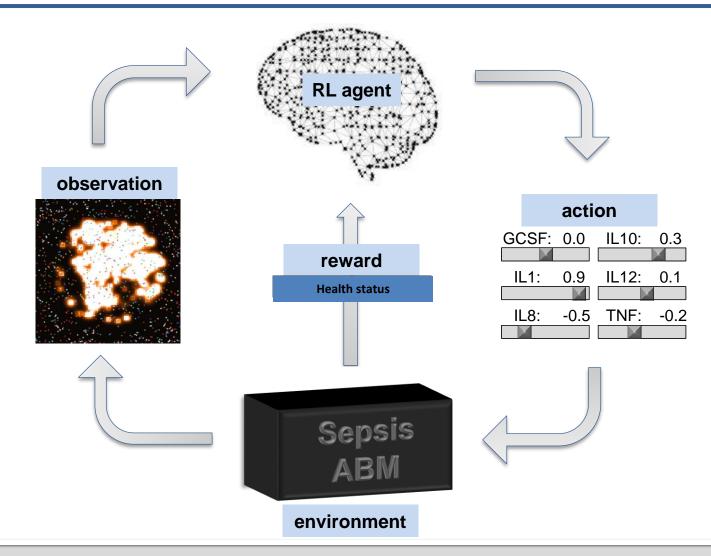
expected to maximize the cumulative

reward

RL agent

learns by interacting with the

environment

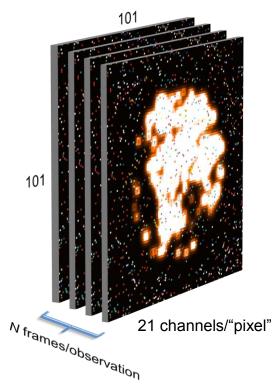


Problem Formulation: Observation Space

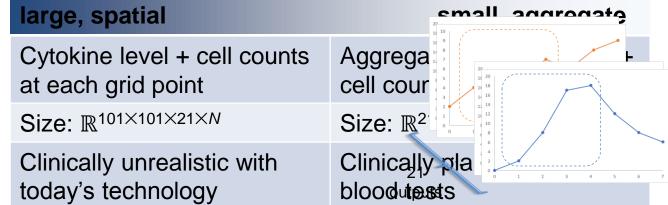
observation

action

reward



Observation Space



Problem Formulation: Action Space

observation action

reward

GCSF: 0.0

IL1: 0.9

IL8: -0.5

IL10: 0.3

IL12: 0.1

TNF: -0.2

Action Space

large, continuous	small, discrete
Differentially control all cytokines at once	Augment or inhibit by a fixed amount; O IL8 O One cytokine at a time
Size: [-1, 1] ¹⁴	Size: 29 O IL12 O
Clinically plausible with multi-channel infusion pump	Clinically plausible TNF O

:

The simulation naturally provides only sparse, binary rewards: life/death

$$r_{\text{outcome}} = \lambda_{+}[\text{heal}] - \lambda_{-}[\text{die}]$$

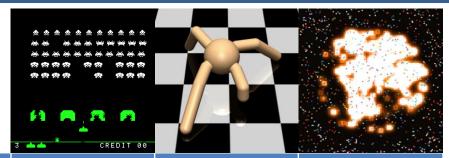
- To aid learning, we added two terms to the reward signal
 - 1. Potential-based reward shaping term
 - Helps guide the RL agent toward "good" states without altering the optimal policy $r_{\phi} = \lambda_{\phi} \big(\mathrm{damage}(s) \mathrm{damage}(s') \big)$
 - 2. A penalty for taking actions
 - Regularizer; promotes conservative actions

$$r_a = -\lambda_a ||a||_1$$

• Final reward signal: $r(s, a, s') = r_{\text{outcome}} + r_{\phi} + r_{a}$

Unique challenges of the sepsis environment

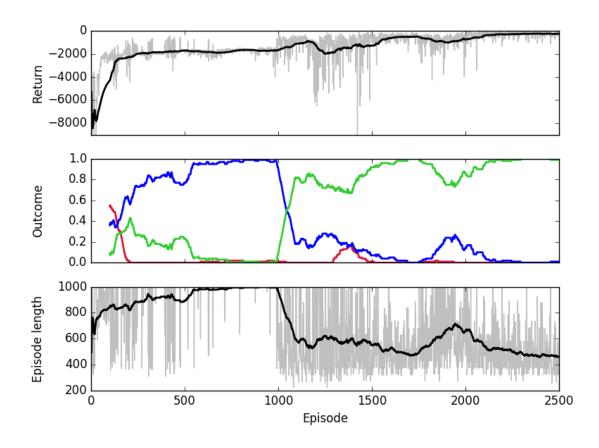
Failed to solve using human experience, genetic algorithms, and classify → control approaches



Challenge	Atari 2600	MuJoCo	Sepsis
High-dimensional state	✓	✓	√
High-dimensional actions		✓	√
Sparse rewards	sometimes		√
Long time horizons			√
Computationally expensive			✓
Unsolvable by humans			√
Stochastic	None	None	High
Each episode has different dynamics			√

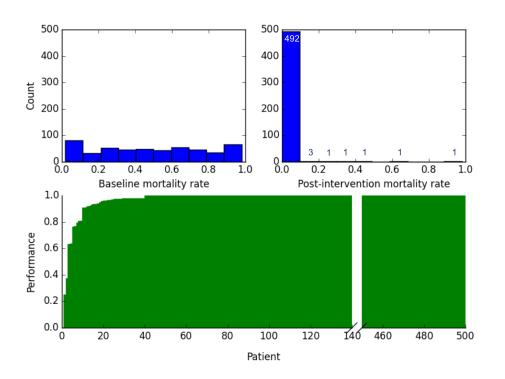
Training the DRL agent

- Environment is "solved" by 2,500 episodes
- Distinct "phases" of learning



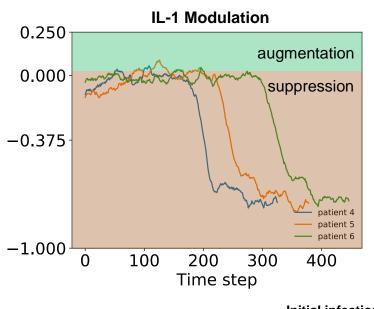
Evaluating the learned policy

- Mortality rate under learned policy
 - Trained patient: 46% → 0%
 - Across 500 patients: 49% → 0.8%



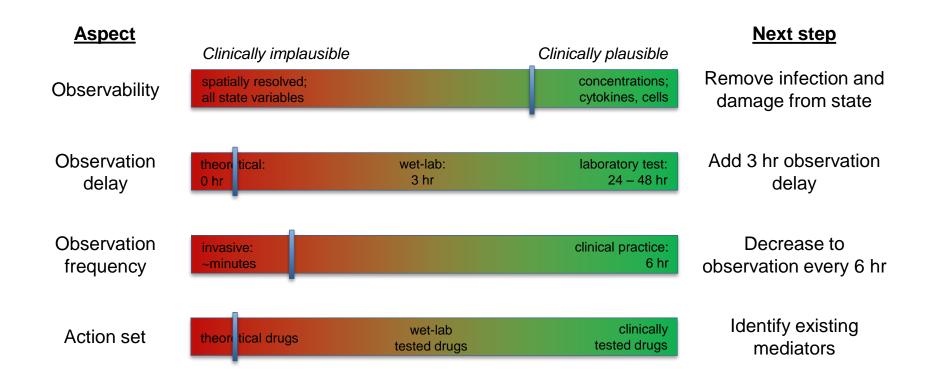
Clinical insight

- IL-1 (pro-inflammatory) is unregulated early and suppressed late
- Suppression comes later for patients with larger initial infections

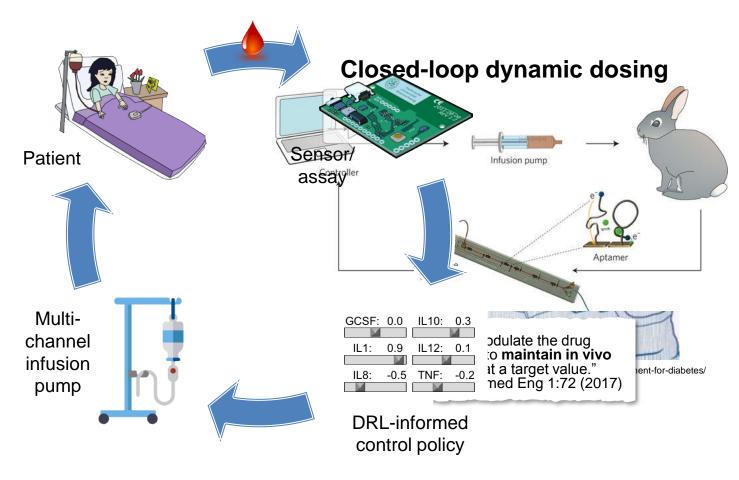


Next steps: Improving clinical plausibility

Tradeoff between controllability and clinical relevance



Long-term vision: Closed-loop control system



https://openclipart.org/https://www.mediware.com/home-care/blog/new-legislation-help-home-infusion-patients/

Thank you!