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Abstract: Large-scale machines such as LLNL’s Sierra present 

a tremendous amount of compute capacity, and are considered 

an ideal platform for training deep neural networks. We present 

a new generalized distributed training framework that aims to 

exploit such large scale systems more effectively.

COMPUTATIONAL CHALLENGES 

IN CNN TRAINING

METHOD PRELIMINARY RESULTS

Limited Parallel Scalability

• CNN training is a compute-intensive problem, yet, its distributed 

memory parallelism is not fully exploited

• State-of-the-art parallel training typically uses data parallelism, which 

is limited by mini-batch sizes (O(100)-O(1000))

Limited Model Scalability

• Memory capacity, esp. that of fast stacked memories, has not been 

growing fast enough

• The demand for larger memory capacity is growing very rapidly

• Simple mesh tangling model would require O(10) GB just for one 

sample → Unlikely to fit device memory on Sierra

• Higher resolution input/output with deeper networks

• Parallelizes along all dimensions, providing new opportunities

• Increased parallelism: Not limited by minibatch sizes

• Increased model sizes: Not limited by the memory size of a GPU

• Performance model to find optimal parallel strategies

• Scaling characteristics depend on various factors, making it non-

trivial to choose optimal parallelization

Convolution performance with spatial partitioning

• Up to 4 Tesla P100 GPUs on an IBM Power8 node

• Partitioned only along the second slowest-changing dimension 

• Compares training throughputs of the extended LBANN on an IBM P8 

node with 4 Tesla P100 GPUs

• Uses a Resnet-like model, consisting of a series of convolutions, 

batch normalization, and ReLU, with the ImageNet dataset

• Measurement only includes forward propagation through the above 

layers, and does not include back prop and I/O

• Hybrid parallel partitions the sample and height dimensions into half, 

respectively
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CONCLUSION

FURTHER INFORMATION
• Contact: Naoya Maruyama (maruyama3@llnl.gov)

• Livermore Big Artificial Neural Networks (LBANN): https://github.com/llnl/lbann

APPROACH: GENERALIZED 

PARALLELIZATION

Distributed Multidimensional Tensors

• Allows partitioning along any of sample, channel, filter and spatial 

domains. 

• Supports halo exchanges in spatial domains. Implemented with a 

custom GPU-centric communication library within a node and with 

MPI across nodes

Distributed GPU Convolutions

• Communicates halo data when spatial domains are partitioned

• Uses cuDNN for local sub tensors

An Extended LBANN Training Framework

• LBANN is an MPI-based distributed deep learning framework 

supporting data-parallel convolutions with parallel CPUs/GPUs

HxW: 32x32, N: 8, C=F=64 HxW: 64x64, N: 16, C=F=64

HxW: 128x128, N: 16, C=F=64 HxW: 128x128, N: 32, C=F=64
Images

𝑁 × 𝐶 × 𝐻 ×𝑊

Filters

𝐹 × 𝐶 × 𝐾 × 𝐾

Feature maps

𝑁 × 𝐹 × 𝐻 ×𝑊

Sample Parallelism

Spatial Parallelism

An example case with nested partitioning along sample and spatial domains

Convolution Convolution parallel overhead Halo exchange

Example 1-D partitioning with halo

Single Sample Parallel Spatial Parallel Hybrid Parallel

MB size: 16 MB size: 32

MB size: 8MB size: 4

• A new CNN training approach that aims to exploit all dimensions of 

parallelism

• Preliminary evaluation confirms expected performance characteristics

• Ongoing work:

• Full-model performance evaluation

• Spatial parallelization over multi-node GPUs

• Channel/filter parallelization

• Performance modeling 


