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Source term estimation (STE) attempts to calculate the most-

likely source characteristics of an atmospheric release given 

concentration observations. The confidence in the STE 

depends on the time and space scales of the observations, 

sensor locations, and release parameters. Previously, we 

developed a probabilistic STE algorithm that was validated 

using high-resolution spatiotemporal observational data1. Here, 

the STE algorithm receives significant improvements, which 

extend applicability of the STE to coarser-resolution datasets. 

The skill of the improved algorithm is quantified over a broad 

range of sensor configurations and release scenarios

Operational Networks are Sparse

STE Combines HPC, ML and 

Bayesian inference

4 – 6: Deep Learning and Bayes’ Thm(left) 24-hr averaged concentration contours of a hypothetical atmospheric release on11 Oct. 

2006. (right) IMS Boolean hit/miss observations for such a release
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CONCLUSIONS

• The regression 𝑓1 score and the Spearman rank 𝑟𝑟 robustly and 

resiliently gauge the disparity between model and observational data

• The inversion algorithm is robust and able to accurately estimate the 

source for the majority of the randomly configured sensor networks.

• The large ensemble of forward model runs and the extensive STE 

evaluation are both computationally expensive.  The work would be 

very difficult without the computational resources available at LLNL 

1 – 3: FLEXPART-WRF and GOF
• Single-run WRF output drives 20,000 

member FLEXPART ensemble

• The STE searches for release 

locations everywhere within the 

search domain

• The goodness-of-fit between 

observations and a given ensemble 

member is computed with Spearman’s 

rank correlation,  𝑟𝑟, and a modified 𝑓1

score that allows for regression2.  

(Left) Domain limits of the five-dimensional hyperspace defining the STE search space. (Top) The WRF, FLEXPART 

and Search Domains. (Right) Binary classification confusion matrix.

(Top Left) Hyperparameters sampled during NN tuning phase. (Bottom Left) Architecture for 12 

layers and 450 max neurons.  (Right) One-to-one plots, convergence plot and learning curve

A fully-connected NN is trained to map any combination of source 

parameters 𝜽 to their cost 𝑱. The architecture is dynamically optimized.

The posterior space is exhaustively sampled with the NN and Latin 

hypercube sampling.

1. Can we estimate the source parameters from sparse observational 

networks like the IMS? 

2. How does our confidence in the source term vary with spatial and 

temporal sensor resolution?

The Radionuclide Network of the International Monitoring System (IMS) 

consists of 80 stations over the entire planet.  

Schematic of the STE algorithm

.

Sensor Density is Important

Posterior distributions of source parameters constrained by dense (top) and course (bottom) sensors networks. The 

Inversion Score is the mean-weighted distance of the posterior distribution from the true parameter.

Inversion Score contours (left) and transects (right) for 7,488 inversion runs testing the STE algorithm for the release 

illustrated in the leftmost column
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