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 Suggested by an AI system (Random Forest) trained on the 
largest ICF simulation dataset ever created
— Trinity Open Science Phase I (LANL)

 Optimal implosion is an ovoid, not sphere, challenging 
known physics

 Presence confirmed by new simulations not in the original 
dataset – digging into “why”

 We are building tech to enable these kinds of discoveries

We have discovered a new kind of robust 
Inertial Confinement Fusion implosion

Machine learning on a large ensemble of simulations has 
pointed to a new class of robust implosions

16.6 MJ

Density at Bang Time
J. L. Peterson, et al., 
Physics of Plasmas, 24(3):032702 (2017) 
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Fall 2015: Can we make NIF Designs more resilient?

We want this

D. Clark
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Fall 2015: Can we make NIF Designs more resilient?

But can get this

D. ClarkCan we withstand these kinds of imperfections?
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Machine Learning said yes! But the results were unexpected

Machine learning helped uncover an 
unexpected, robust NIF ICF capsule design

— Enabled by large-scale HPC ensemble simulation
— Post-facto learning on processed results
— Computer architecture matters
— Machine learning brings you back to the physics

Robust 
aspherical 

design

Density map of imploded shell

J. L. Peterson, et al., 
Physics of Plasmas, 24(3):032702 (2017) Trinity @LANL

Presenter
Presentation Notes
Current ICF work – we are industry leaders 
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How did we do it?

1. Turned Trinity into a server farm with 
in-transit analysis
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How did we do it?

1. Turned Trinity into a server farm with 
in-transit analysis

2. Ran a bunch of simulations of NIF 
implosions (30x more than any previous 
study)

Data Points

P1 P2 P4

 9 ways to mess up a NIF implosion (parameters)

 Successfully completed 60k simulations 

 39 Million CPU Hours 

 5 PB Raw Data, 100 TB Processed & Zipped
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How did we do it?

1. Turned Trinity into a server farm with 
in-transit analysis

2. Ran a bunch of simulations of NIF 
implosions (30x more than any previous 
study)

3. **Trained a ML model to fill in the gaps

** Summer Student Kelli Humbird (now LGSP)

Data Points

Surrogate
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Random Forest surrogates, of all those tested, are the most accurate 
models for this dataset

 Tested multiple machine learning algorithms
— Gaussian process, multivariate adaptive 

regression splines, nearest neighbor regression, 
support vector machines, random forests

 Dimensionality, volume of data, complexity of 
response surface (cliffs, peaks) make accurate 
interpolation challenging

 Random forest regressor most accurately 
models this ICF data

Mean error for yield models as a function 
of training data set size

Slide: K. Humbird

Presenter
Presentation Notes
Lots of types of surrogates, so we can look at how various surrogates perform for our main QOI- yield.
End slide by saying RF does best- why?
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Random Forest surrogates, of all those tested, are the most accurate 
models for this dataset

 Tested multiple machine learning algorithms
— Gaussian process, multivariate adaptive 

regression splines, nearest neighbor regression, 
support vector machines, random forests

 Dimensionality, volume of data, complexity of 
response surface (cliffs, peaks) make accurate 
interpolation challenging

 Random forest regressor most accurately 
models this ICF data

Mean error for yield models as a function 
of training data set size

Random forest 
yield model has 
8% mean error 
when trained 
on 80% of the 
data

Slide: K. Humbird

See K. Humbird’s Talk This Afternoon on Turning RFs into DNNs
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How did we do it?

1. Turned Trinity into a server farm with 
in-transit analysis

2. Ran a bunch of simulations of NIF 
implosions (30x more than any previous 
study)

3. **Trained a ML model to fill in the gaps

4. **Optimized the ML model for 
“robustness”

** Summer Student Kelli Humbird (now LGSP)

Robust to 
perturbations

Not robust to 
perturbations

Contours of 
Yield
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How did we do it?

1. Turned Trinity into a server farm with 
in-transit analysis

2. Ran a bunch of simulations of NIF 
implosions (30x more than any previous 
study)

3. **Trained a ML model to fill in the gaps

4. **Optimized the ML model for 
“robustness”

5. Ran new simulations at the predicted 
sweet spot & dug into the physics

** Summer Student Kelli Humbird (now LGSP)



The Trinity Ovoid changed my view 
on how machine learning could 
help my do my job 
[HPC-enabled science].



Before
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Trinity changed my view of how ML can help science

Before

After

Scientist

Machine 
Learning

Hard 
Problems



Merlin
Machine Learning for HPC Workflows



Merlin
LBANN flux spindle celery
sina UQPipeline DJINN ToNIC

conduit



Merlin
LBANN flux spindle celery
sina UQPipeline DJINN ToNIC

conduit

Kelli Humbird
this afternoon

Jim Gaffney
this afternoon

Brian Van Essen
tomorrow 
afternoon
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We’re aiming to make a “splash” for early Sierra access

 Generate 1 billion semi-analytic ICF implosion simulations
— Oversample a high-dimensional space
— Train a deep learning model on a physics problem
— Develop new physics insight

 Shareable data for the machine learning community
— Beyond MNIST and ImageNET
— Several billion images, plus scalars, time histories

 Challenging and meaningful problems unique to the Laboratory

An exciting opportunity to establish Lab leadership in 
cognitive computing and data science

1 Billion Sims!
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 Suggested by an AI system (Random Forest) trained on the 
largest ICF simulation dataset ever created
— Trinity Open Science Phase I (LANL)

 Optimal implosion is an ovoid, not sphere, challenging 
known physics

 Presence confirmed by new simulations not in the original 
dataset – digging into “why”

 We are building tech to enable these kinds of discoveries

We have discovered a new kind of robust 
Inertial Confinement Fusion implosion

Machine learning on a large ensemble of simulations has 
pointed to a new class of robust implosions

16.6 MJ

Density at Bang Time
J. L. Peterson, et al., 
Physics of Plasmas, 24(3):032702 (2017) 
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Thank You!
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