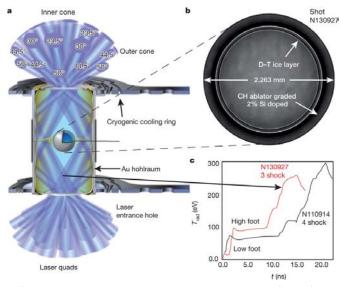
Transfer Learning Applications toward ICF Capsule Manufacturing

Yuriy Ayzman Shiv Sundram Robert Blake Dr. Kurt Boehm



Fuel for ICF targets is loaded into small capsules

- Small capsules inside complex assembly
- Capsules must be perfect
 - Defects grow exponentially

Fuel gain exceeding unity in an inertially confined fusion implosion. O. A. Hurricane et. al. Nature vol. 506, 2014

Detecting bad capsules early improves throughput

Quality control has two passes

- First pass: cheap
 - Top & bottom pictures taken of shells
 - 1 person at General Atomics reviews images
 - Only 1 person for consistent evaluation
 - Bad shells thrown away.
- Second pass: expensive
 - Good shells get examined via atomic force microscope
 - Bad shells thrown away

Human Operator Accuracy

- An operator was asked to reclassify 206 images
- Percentage classified correctly
 - 83% of the GOOD images
 - 68% of the BAD images
 - 75% overall
- Accuracy is subjective and fluctuates depending on current standards

Can machine learning replace the first screen?

- Goal: Remove the human from the loop
 - Humans make mistakes
 - Humans are slow
 - Looking at thousands of images is boring

Stretch goal: do better than humans

ResNet18

- Extensive work w/ ResNet
 - used as a baseline for comparison
- ResNet yields higher accuracies compared to VGG16 (initially used by Dr. Boehm)
- Varying the # layers frozen in ResNet
 - increasing the # of trainable layers improved validation accuracy
- Modified:
 - data augmentation
 - crop
 - flip
 - dropout
 - additional FC layers

Modern Convolutional Neural Networks

These architectures:

- take advantages of modern image classification techniques
- increased accuracy or reduced model size

SqueezeNet

small, low-parameter model

DenseNet

heavily connected convolutional layers

SqueezeNet (ICLR 2017) landola et al.

- Smaller CNNs offer 3 advantages
 - Much smaller models
 - 50x fewer parameters
 - 500x less memory
 - Fast inference speed
 - Reduced overfitting
- Good for small datasets
- Accuracy not as good as top 5 models

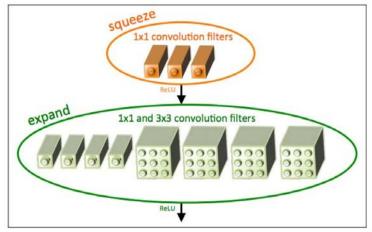
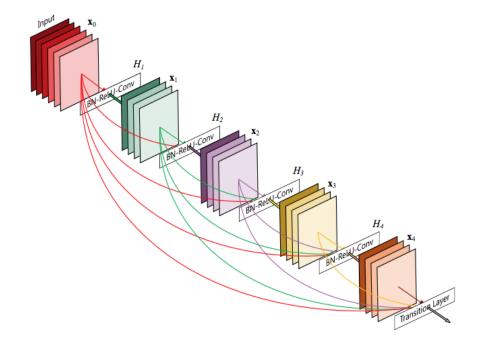
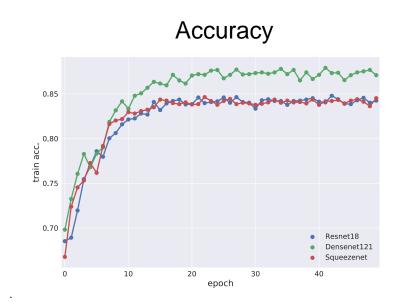
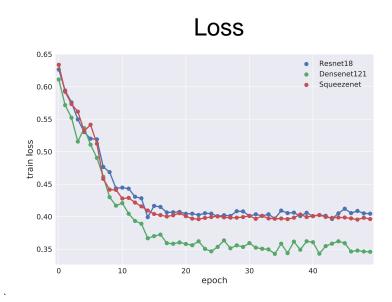
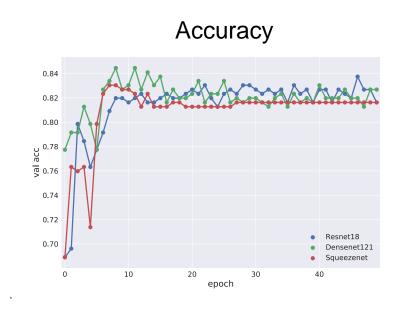
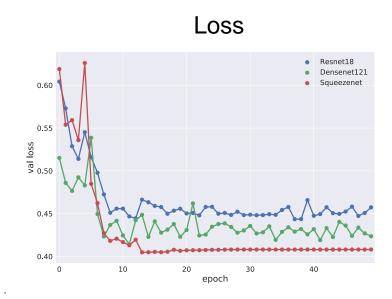



Figure copyright landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.


DenseNet (CVPR 2017 best paper)


- current state of the art
- Densely connected convolutional layers
 - For each layer, feature maps of all preceding layers used as inputs
 - Designed for robust feature propagation
 - Apparent trend of using more connections between layers (RESNET)


Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.


ResNet, DenseNet, SqueezeNet Comparison (Training)

ResNet, DenseNet, SqueezeNet Comparison (Validation)

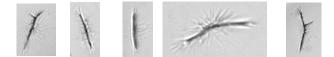
Conclusions and Future Work

ICF Capsule data

- Can be classified with an accuracy of ~83% (slightly better than a human operator)
- Fairly subjective for certain classes of defects

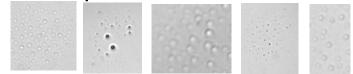
Next:

- Classify the various defect types
- Compare results with low precision networks
- Leverage lessons learned to other projects


Thank You

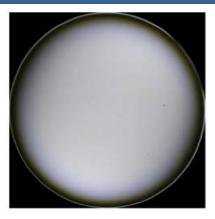
Additional Slides

Humans look for several different defects


Cracks

Spider cracks

Water spots



Vacuoles

Other

Good

Bad

