Publications

Zhang, J., Kailkhura, B., and Han, T. Y-J. (2020). “Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning.” ICML 2020. []

This paper studies the problem of post-hoc calibration of machine learning classifiers. We introduce the following desiderata for uncertainty calibration: (a) accuracy-preserving, (b) data-efficient, and (c) high expressive power. We show that none of the existing methods satisfy all three requirements, and demonstrate how Mix-n-Match calibration strategies (i.e., ensemble and composition) can help achieve remarkably better data efficiency and expressive power while provably preserving classification accuracy of the original classifier. We also show that existing calibration error estimators (e.g., histogram-based ECE) are unreliable especially in small-data regime. Therefore, we propose an alternative data-efficient kernel density-based estimator for a reliable evaluation of the calibration performance and prove its asymptotically unbiasedness and consistency.

Shanthamallu, U., Thiagarajan, J. J., and Spanias, A. (2020). “Regularized Attention Mechanism for Graph Attention Networks.” IEEE ICASSP 2020. []

Machine learning models that can exploit the inherent structure in data have gained prominence. In particular, there is a surge in deep learning solutions for graph-structured data, due to its wide-spread applicability in several fields. Graph attention networks (GAT), a recent addition to the broad class of feature learning models in graphs, utilizes the attention mechanism to efficiently learn continuous vector representations for semi-supervised learning problems. In this paper, we per- form a detailed analysis of GAT models, and present interesting insights into their behavior. In particular, we show that the models are vulnerable to heterogeneous rogue nodes and hence propose novel regularization strategies to improve the robustness of GAT models. Using benchmark datasets, we demonstrate performance improvements on semi-supervised learning, using the proposed robust variant of GAT.

Thiagarajan, J. J., Venkatesh, B., and Rajan, D. (2020). “Learn-by-Calibrating: Using Calibration as a Training Objective.” IEEE ICASSP 2020. []

With rapid adoption of deep learning in critical applications, the question of when and how much to trust these models often arises, which drives the need to quantify the inherent uncertainties. While identifying all sources that account for the stochasticity of models is challenging, it is common to augment predictions with confidence intervals to convey the expected variations in a model's behavior. We require prediction intervals to be well-calibrated, reflect the true uncertainties, and to be sharp. However, existing techniques for obtaining prediction intervals are known to produce unsatisfactory results in at least one of these criteria. To address this challenge, we develop a novel approach for building calibrated estimators. More specifically, we use separate models for prediction and interval estimation, and pose a bi-level optimization problem that allows the former to leverage estimates from the latter through an uncertainty matching strategy. Using experiments in regression, time-series forecasting, and object localization, we show that our approach achieves significant improvements over existing uncertainty quantification methods, both in terms of model fidelity and calibration error.

Thiagarajan, J. J., Venkatesh, B., Sattigeri, P., Bremer, P-T. (2020). “Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors.” 34th AAAI Conference on Artificial Intelligence 2020. []

With rapid adoption of deep learning in critical applications, the question of when and how much to trust these models often arises, which drives the need to quantify the inherent uncertainties. While identifying all sources that account for the stochasticity of models is challenging, it is common to augment predictions with confidence intervals to convey the expected variations in a model's behavior. We require prediction intervals to be well-calibrated, reflect the true uncertainties, and to be sharp. However, existing techniques for obtaining prediction intervals are known to produce unsatisfactory results in at least one of these criteria. To address this challenge, we develop a novel approach for building calibrated estimators. More specifically, we use separate models for prediction and interval estimation, and pose a bi-level optimization problem that allows the former to leverage estimates from the latter through an uncertainty matching strategy. Using experiments in regression, time-series forecasting, and object localization, we show that our approach achieves significant improvements over existing uncertainty quantification methods, both in terms of model fidelity and calibration error.