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Uses and Applications of Hydrogen Gas

Hydrogen is one of the most important raw materials for the
petroleum refinery industry (Gupta, CRC Press, 2008)

Olefins +H2 (g) −→ Paraffins
R1−H2C−CH2−R2 (g)+H2 (g) −→ R1−H2CH (g)+HCH2−R2 (g)
R − SH (g) + H2 (g) −→ R (g) + H2S (g)

Hydrogen is a precursor for many chemical industries, e.g.,
ammonia production

3H2 (g) + N2 (g)
∆H≪0
−−−−→ NH3 (g)

Hydrogen is a carrier gas for the production of thin film solar
cells (Crose et al., Chem. Eng. Science , 2015)

e− + H2 (g) −→ e− + 2H·

H· + SiH4 (g) −→ H2 (g) + (SiH3)·

Hydrogen is an efficient energy carrier for hydrogen-based
technologies (e.g. fuel cells)
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General Information of Hydrogen Production

In industry, hydrogen is produced by

Steam methane reforming (SMR) process, which accounts for 48%
of world-wide hydrogen production (Ewan and Allen, Int. J. Hydrogen Energy, 2005)

CH4(g) + H2O(g) ↼−−−−−−−−⇁
∆H≫0
NiAl2O3

CO(g) + CO2(g) + H2(g) (1)

Top-fired reformer
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Industrial-scale Steam Methane Reformer

Geometry
Length: 16 m
Width: 16 m
Height: 13 m

Components
336 reforming tubes
96 burners
8 flue-gas tunnels

Daily hydrogen production of
2.8×106 Nm3

Daily superheated steam
production of 1.7×106 kg

Annual operating cost of $62×106
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Industrial-scale Steam Methane Reformer Mesh

The industrial-scale reformer mesh consists of 41 million grids

Mesh information

The reformer mesh
Recommended
range

Min orthogonal factor 0.459 0.167 − 1.000

Max ortho skew 0.541 0.000 − 0.850
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Industrial-scale Reformer CFD Model

Modeling turbulent flows
Standard k − ǫ model with ANSYS enhanced wall treatment

Modeling the combustion phenomena
Premixed combustion assumption
Global kinetic model of CH4 combustion (D. G. Nicol, PhD Thesis, 1995)

Global kinetic model of H2 combustion (Bane et al., Technical Report, 2010)

FR/ED turbulence-chemistry interaction model
Modeling thermal radiation

Empirical model for radiative properties (A. Maximov, PhD Thesis, 2012)

Beer’s law and Kirchoff’s law
Discrete ordinate method
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Industrial-scale Reformer CFD Model

Modeling turbulent flows
Standard k − ǫ model with ANSYS enhanced wall treatment

Modeling the catalyst network of each reforming tube
A continuum approach using ANSYS porous zone function
Effectiveness factor and catalyst packing factor

Modeling the tube wall of each reforming tube
ANSYS thin wall function

Modeling the SMR process
Global kinetic model (J. Xu and G. F. Froment, AIChE Journal, 1989)
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CFD Model Validation with Plant Data

Simulation data generated by the reformer CFD model is in good
agreement with the data provided by industry

Reformer CFD model Industry Deviation

Fired duty (kW) 209474.8 211597.3 1.0 %

Total absorbed
heat (kW)

113895.5 112246.2 1.5%

Fraction of
absorbed heat (%)

54.4 53.1 2.4%

OD average
heat flux (kW/m2)

59.2 58 2.1%

ID average
heat flux (kW/m2)

69.5 75.7 8.2%

Average outlet
flue gas temp (K)

1243.1 1283 3.1%

x̄outlet
H2

46.5 46.8 0.6 %
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Motivations for Data-driven Modeling

The reformer service life is monitored by the system of infrared
cameras that periodically record the outer wall temperatures
(OTWTs) of the reforming tubes in real-time

Feedback from our third-party collaborator and publicly available
literature suggest that OTWTs can be controlled by the total fuel
flow rate and its spatial distribution inside the reformer

We developed an integrated model identification procedure to
discover the dependence of the OTWT distribution on the reformer
input using

Bayesian variable selection

Sparse nonlinear regression
Bayesian model averaging

Theories of thermal radiation

Reformer geometry
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Data-driven Model for the ith OTWT

The data-driven model for the
relationship between the i th

OTWT at a fixed height and the
furnace-side feed (FSF)
distribution is formulated as
follows,

T̂ P,n
i =

Ki∑

k=1

wP
i,k T̃ P,n

i,k (2a)

where
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T̂ P,n
i is the BMA estimate of the ith

OTWT
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based on the kth sub-model for the
ith OTWT
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is the gth basis function in

the library of transformation functions
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k th Sub-model for the ith OTWT (i.e., Mi,k )
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G = 8 is the number of functions in the library of transformation functions

#»α
kg
i ∈ IR96×1 is the empirical vector of Mi,k corresponding to fg (·)

αk
i ∈ [298.15, 348.15] is the estimated ambient temperature of Mi,k
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Spare Nonlinear Regression with MLE

The formulation for the sparse nonlinear regression with MLE is
proposed as follows

min
αk
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Spare Nonlinear Regression with MLE

Regressors of the ith OTWT are defined as
the burners that directly control the ith OTWT

T̃ P,n
i ,k =

G∑

g=1

(
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SiR ∈ IRj×1 is the given set of regressors

#̂»α
kg
i is the MLE of #»α

kg
i ∈ IRj×1

α̂k
i is the MLE of αk

i ∈ IR

#»

F n
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∈ IRj×1 is the design matrix
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Model Identification Flow Diagram
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Simulation Inputs

21 reformer CFD data sets with varying FSF distributions and total
FSF flow rates are available
Reformer CFD data sets are partitioned into two categories

A reformer CFD training data consists of 18 data sets
A reformer CFD testing data consists of 3 data sets

Sλ = {0.1,0.2, · · · ,1.0,1.2, · · · ,2.0,5.0,10,20}, which controls
the model complexity and goodness of fit

Small values of λi result in a low degree of shrinkage and favor
overfitting data-driven models with high goodness of fit
Large values of λi result in a high degree of shrinkage and favor
underfitting data-driven models with low levels of complexity

Leave-one-out cross validation is used to find the best λi

The 77th reforming tube is chosen as a representative example
because the number of sub-models with high goodness of fit (i.e.,
4) and the number of predictors (i.e., 9) for the 77th OTWT
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Results
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The model for the 77th OTWT

T̂ P,n
77 =0.01T̃ P,n

77,1 + 0.23T̃ P,n
77,2

+ 0.29T̃ P,n
77,3 + 0.47T̃ P,n

77,4

(9)
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Results

The data-driven model for the OTWT distribution correctly identifies the
hot and cold regions
The absolute maximum and average deviations from the reformer CFD
data are 20.1 K and 2.9 K, respectively
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Flowchart of The Furnace-balancing Scheme

The furnace-balancing scheme is
developed based on

The high-fidelity reformer CFD model
(Tran et al., Chem. Eng. Sci., 2017)

The statistical-based model
identification (Tran et al., Chem. Eng. Res. Des., in press)

The furnace-balancing optimizer (Tran et al.,

Comp. & Chem. Eng., 2017)
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Results

This result is obtained within a minute

The total FSF flow rate is increased by 40% from 98.113 to
136.896 kg sec−1 without damaging the reforming tubes indicated
by the evidence that the maximum value in the OTWT distribution
is 1288.35 K
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Conclusion

The integrated model identification procedure is structured to be
fully distributed, which allows the data-driven model for 336
reforming tubes to be derived simultaneously from the training
data and independently from one another

Leave-out-one cross validation is successfully implemented to find
the optimal LASSO parameter for each reforming tube

The results from the goodness-of-fit and out-of-sample prediction
tests of the data-driven model for the OTWT distribution
demonstrated the high effectiveness of the method proposed in
this work
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