# Bayesian Model Averaging for Estimating the Temperature Distribution in a Steam Methane Reforming Furnace

Anh Tran<sup>1</sup>, Madeleine Pont<sup>1</sup>, Andres Aguirre<sup>1</sup>, Helen Durand<sup>1</sup>, Marquis Crose<sup>1</sup> and Panagiotis D. Christofides<sup>1,2</sup>

<sup>1</sup> Department of Chemical & Biomolecular Engineering, University of California, Los Angeles

<sup>2</sup>Department of Electrical Engineering, University of California, Los Angeles

**Inaugural Data Science Workshop** 

August 7, 2018



### Uses and Applications of Hydrogen Gas

- Hydrogen is one of the most important raw materials for the petroleum refinery industry (Gupta, CRC Press, 2008)
  - Olefins  $+H_2(g) \longrightarrow Paraffins$

• 
$$R_1 - H_2C - CH_2 - R_2(g) + \frac{H_2}{2}(g) \longrightarrow R_1 - H_2CH(g) + HCH_2 - R_2(g)$$

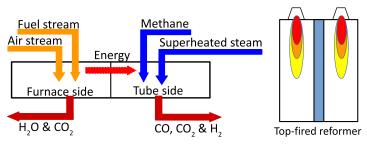
- $R SH(g) + H_2(g) \longrightarrow R(g) + H_2S(g)$
- Hydrogen is a precursor for many chemical industries, e.g., ammonia production
  - $\bullet \ 3H_2(g) + N_2(g) \xrightarrow{\Delta H \ll 0} NH_3(g)$
- Hydrogen is a carrier gas for the production of thin film solar Cells (Crose et al., Chem. Eng. Science, 2015)
  - $e^- + \frac{H_2}{(g)} \longrightarrow e^- + 2H^*$
  - $\bullet \ \ H^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}} + SiH_4\left(g\right) \longrightarrow H_2\left(g\right) + \left(SiH_3\right)^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$
- Hydrogen is an efficient energy carrier for hydrogen-based technologies (e.g. fuel cells)

### General Information of Hydrogen Production

- In industry, hydrogen is produced by
  - Steam methane reforming (SMR) process, which accounts for 48% of world-wide hydrogen production (Ewan and Allen, Int. J. Hydrogen Energy, 2005)

$$CH_4(g) + H_2O(g) \stackrel{\longleftarrow}{\underset{NiA_2O_3}{\longleftarrow}} CO(g) + CO_2(g) + H_2(g)$$
 (1)

Top-fired reformer

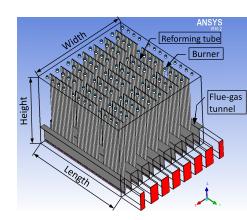


#### Industrial-scale Steam Methane Reformer

Geometry

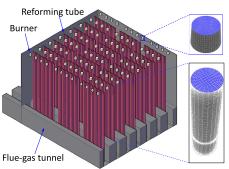
Length: 16 mWidth: 16 mHeight: 13 m

- Components
  - 336 reforming tubes
  - 96 burners
  - 8 flue-gas tunnels
- Daily hydrogen production of 2.8×10<sup>6</sup> Nm<sup>3</sup>
- Daily superheated steam production of 1.7×10<sup>6</sup> kg
- Annual operating cost of \$62×10<sup>6</sup>



#### Industrial-scale Steam Methane Reformer Mesh

The industrial-scale reformer mesh consists of 41 million grids

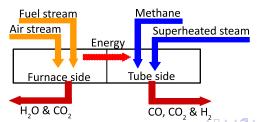


#### Mesh information

|                       | The reformer mesh | Recommended range |
|-----------------------|-------------------|-------------------|
| Min orthogonal factor | 0.459             | 0.167 — 1.000     |
| Max ortho skew        | 0.541             | 0.000 - 0.850     |

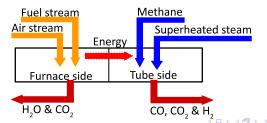
### Industrial-scale Reformer CFD Model

- Modeling turbulent flows
  - Standard  $k \epsilon$  model with ANSYS enhanced wall treatment
- Modeling the combustion phenomena
  - Premixed combustion assumption
  - Global kinetic model of CH<sub>4</sub> combustion (D. G. Nicol, PhD Thesis, 1995)
  - Global kinetic model of H<sub>2</sub> combustion (Bane et al., Technical Report, 2010)
  - FR/ED turbulence-chemistry interaction model
- Modeling thermal radiation
  - Empirical model for radiative properties (A. Maximov, PhD Thesis, 2012)
  - Beer's law and Kirchoff's law
  - Discrete ordinate method



#### Industrial-scale Reformer CFD Model

- Modeling turbulent flows
  - Standard  $k \epsilon$  model with ANSYS enhanced wall treatment
- Modeling the catalyst network of each reforming tube
  - A continuum approach using ANSYS porous zone function
  - Effectiveness factor and catalyst packing factor
- Modeling the tube wall of each reforming tube
  - ANSYS thin wall function
- Modeling the SMR process
  - Global kinetic model (J. Xu and G. F. Froment, AIChE Journal, 1989)



#### CFD Model Validation with Plant Data

 Simulation data generated by the reformer CFD model is in good agreement with the data provided by industry

|                                  | Reformer CFD model | Industry | Deviation |
|----------------------------------|--------------------|----------|-----------|
| Fired duty (kW)                  | 209474.8           | 211597.3 | 1.0 %     |
| Total absorbed heat (kW)         | 113895.5           | 112246.2 | 1.5%      |
| Fraction of absorbed heat (%)    | 54.4               | 53.1     | 2.4%      |
| OD average<br>heat flux (kW/m²)  | 59.2               | 58       | 2.1%      |
| ID average<br>heat flux (kW/m²)  | 69.5               | 75.7     | 8.2%      |
| Average outlet flue gas temp (K) | 1243.1             | 1283     | 3.1%      |
| $ar{\mathbf{x}}_{H_2}^{outlet}$  | 46.5               | 46.8     | 0.6 %     |

### Motivations for Data-driven Modeling

- The reformer service life is monitored by the system of infrared cameras that periodically record the outer wall temperatures (OTWTs) of the reforming tubes in real-time
- Feedback from our third-party collaborator and publicly available literature suggest that OTWTs can be controlled by the total fuel flow rate and its spatial distribution inside the reformer
- We developed an integrated model identification procedure to discover the dependence of the OTWT distribution on the reformer input using
  - Bayesian variable selection
  - Sparse nonlinear regression
  - Bayesian model averaging
  - Theories of thermal radiation
  - Reformer geometry



### Data-driven Model for the ith OTWT

 The data-driven model for the relationship between the i<sup>th</sup> OTWT at a fixed height and the furnace-side feed (FSF) distribution is formulated as follows,

$$\widehat{T}_{i}^{P,n} = \sum_{k=1}^{K_{i}} w_{i,k}^{P} \widetilde{T}_{i,k}^{P,n}$$
 (2a)

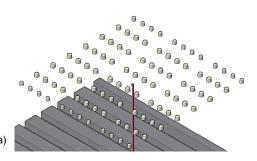
where

$$\sum_{k=1}^{K_i} w_{i,k}^P = 1 {(2b)}$$

$$\widetilde{T}_{i,k}^{P,n} = \sum_{g=1}^{G} \left( \overrightarrow{\alpha}_{i}^{kg} \right)^{T} \cdot f_{g} \left( \overrightarrow{F}^{n} \right) + \alpha_{i}^{k} \quad (2c)$$

$$\vec{F}^n = [F_1^n, F_2^n, \cdots, F_{96}^n]^T$$
 (2d)

$$\left\| \vec{F}^n \right\|_{\bullet} = F_{tot}^n \tag{2e}$$



- $\widehat{T}_{i}^{P,n}$  is the BMA estimate of the *ith* OTWT
- $\widetilde{T}_{i,k}^{P,n}$  is the estimate of the *ith* OTWT based on the *kth* sub-model for the *ith* OTWT
- $f_g(\vec{F}^n)$  is the *gth* basis function in the library of transformation functions

Inaugural Data Science Workshop

## $k^{th}$ Sub-model for the *ith* OTWT (i.e., $M_{i,k}$ )

$$\widetilde{T}_{i,k}^{P,n} = \sum_{g=1}^{G} \left( \overrightarrow{\alpha}_{i}^{kg} \right)^{T} \cdot f_{g} \left( \overrightarrow{F}^{n} \right) + \alpha_{i}^{k}$$
(3)

where

$$\begin{split} f_{1}\left(\overrightarrow{F}^{n}\right) &= \left[F_{1}^{n}, F_{2}^{n}, \cdots, F_{96}^{n}\right]^{T} & f_{5}\left(\overrightarrow{F}^{n}\right) = \left[\sqrt[3]{F_{1}^{n}}, \sqrt[3]{F_{2}^{n}}, \cdots, \sqrt[3]{F_{96}^{n}}\right]^{T} \\ f_{2}\left(\overrightarrow{F}^{n}\right) &= \left[\left(F_{1}^{n}\right)^{2}, \left(F_{2}^{n}\right)^{2}, \cdots, \left(F_{96}^{n}\right)^{2}\right]^{T} & f_{6}\left(\overrightarrow{F}^{n}\right) = \left[\sqrt[4]{F_{1}^{n}}, \sqrt[4]{F_{2}^{n}}, \cdots, \sqrt[4]{F_{96}^{n}}\right]^{T} \\ f_{3}\left(\overrightarrow{F}^{n}\right) &= \left[\left(F_{1}^{n}\right)^{3}, \left(F_{2}^{n}\right)^{3}, \cdots, \left(F_{96}^{n}\right)^{3}\right]^{T} & f_{7}\left(\overrightarrow{F}^{n}\right) = \left[\sqrt[5]{F_{1}^{n}}, \sqrt[5]{F_{2}^{n}}, \cdots, \sqrt[5]{F_{96}^{n}}\right]^{T} \\ f_{4}\left(\overrightarrow{F}^{n}\right) &= \left[\sqrt[2]{F_{1}^{n}}, \sqrt[2]{F_{2}^{n}}, \cdots, \sqrt[2]{F_{96}^{n}}\right]^{T} & f_{8}\left(\overrightarrow{F}^{n}\right) = \left[\exp\left(F_{1}^{n}\right), \exp\left(F_{2}^{n}\right), \cdots, \exp\left(F_{96}^{n}\right)\right]^{T} \end{split}$$

- ullet G=8 is the number of functions in the library of transformation functions
- $\vec{\alpha}_{i}^{kg} \in \mathbb{R}^{96 \times 1}$  is the empirical vector of  $M_{i,k}$  corresponding to  $f_{g}(\cdot)$
- $\alpha_i^k \in [298.15, 348.15]$  is the estimated ambient temperature of  $M_{i,k}$

### Spare Nonlinear Regression with MLE

 The formulation for the sparse nonlinear regression with MLE is proposed as follows

a as follows
$$\min_{\substack{\alpha_{i}^{k} \in [298.15, 348.15] \\ \alpha_{i}^{kg} \in [0, \infty)}} \sum_{n=1}^{N} \frac{\left(T_{i}^{n} - \widetilde{T}_{i,k}^{P,n}\right)^{2}}{2\left(\sigma_{i}^{n}\right)^{2}} + \lambda_{i} \sum_{g=1}^{8} \left\| \overrightarrow{\alpha}_{i}^{kg} \right\|_{1} \tag{6}$$

subject to

$$\sum_{g=1}^{8} \alpha_{ii}^{kg} f_g \left( \overline{F}^0 \right) = \sum_{g=1}^{8} \alpha_{ij}^{kg} f_g \left( \overline{F}^0 \right)$$
 if  $d_{ii} = d_{ij}$  (7a)

$$\sum_{g=1}^{8} \alpha_{ii}^{kg} f_g\left(\overline{F}^0\right) \ge \left(\frac{d_{ij}}{d_{ii}}\right)^{\beta_i} \sum_{g=1}^{8} \alpha_{ij}^{kg} f_g\left(\overline{F}^0\right) \qquad \text{if } d_{ii} < d_{ij} \qquad (7b)$$

$$\sum_{g=1}^{8} \alpha_{ii}^{kg} f_g \left( \overline{F}^0 \right) \le \left( \frac{d_{ij}}{d_{ii}} \right)^{\beta_u} \sum_{g=1}^{8} \alpha_{ij}^{kg} f_g \left( \overline{F}^0 \right) \qquad \text{if } d_{ii} < d_{ij} \qquad (7c)$$

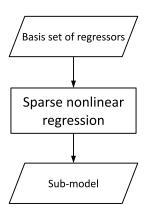
$$\overline{F}^0 = \frac{F_{tot}^{typ}}{96} \tag{7d}$$

## Spare Nonlinear Regression with MLE

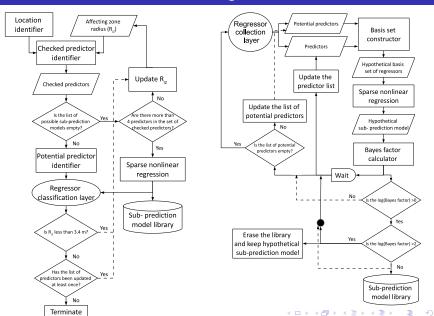
 Regressors of the ith OTWT are defined as the burners that directly control the ith OTWT

$$\widetilde{T}_{i,k}^{P,n} = \sum_{g=1}^{G} \left( \widehat{\vec{\alpha}}_{i}^{kg} \right)^{T} \cdot f_{g} \left( \left. \overrightarrow{F}^{n} \right|_{S_{iR}} \right) + \widehat{\alpha}_{i}^{k}$$
 (8)

- $S_{iR} \in \mathbb{R}^{j \times 1}$  is the given set of regressors
- $\widehat{\vec{\alpha}}_{i}^{kg}$  is the MLE of  $\vec{\alpha}_{i}^{kg} \in \mathbb{R}^{j \times 1}$
- $\widehat{\alpha}_{i}^{k}$  is the MLE of  $\alpha_{i}^{k} \in \mathbb{R}$
- $\bullet$   $\vec{F}^n \Big|_{S_{iR}} \in \mathbb{R}^{j \times 1}$  is the design matrix



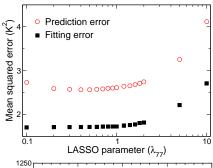
### Model Identification Flow Diagram

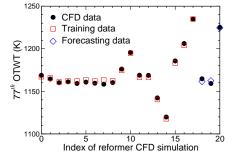


### Simulation Inputs

- 21 reformer CFD data sets with varying FSF distributions and total FSF flow rates are available
- Reformer CFD data sets are partitioned into two categories
  - A reformer CFD training data consists of 18 data sets
  - A reformer CFD testing data consists of 3 data sets
- $\mathbf{S}_{\lambda} = \{0.1, 0.2, \cdots, 1.0, 1.2, \cdots, 2.0, 5.0, 10, 20\}$ , which controls the model complexity and goodness of fit
  - Small values of λ<sub>i</sub> result in a low degree of shrinkage and favor overfitting data-driven models with high goodness of fit
  - Large values of  $\lambda_i$  result in a high degree of shrinkage and favor underfitting data-driven models with low levels of complexity
- Leave-one-out cross validation is used to find the best  $\lambda_i$
- The 77th reforming tube is chosen as a representative example because the number of sub-models with high goodness of fit (i.e., 4) and the number of predictors (i.e., 9) for the 77th OTWT

### Results





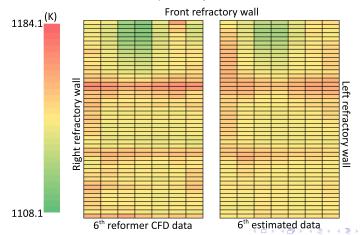
- The smallest fitting error corresponds to the smallest value of  $\lambda$ =0.1
- The largest fitting error corresponds to the largest value of  $\lambda$ =10
- The smallest prediction error corresponds to  $\widehat{\lambda_{77}}$ =0.5

The model for the 77th OTWT

$$\widehat{T}_{77}^{P,n} = 0.01\widetilde{T}_{77,1}^{P,n} + 0.23\widetilde{T}_{77,2}^{P,n} + 0.29\widetilde{T}_{77,3}^{P,n} + 0.47\widetilde{T}_{77,4}^{P,n}$$
(9)

#### Results

- The data-driven model for the OTWT distribution correctly identifies the hot and cold regions
- The absolute maximum and average deviations from the reformer CFD data are 20.1 K and 2.9 K, respectively



### Flowchart of The Furnace-balancing Scheme

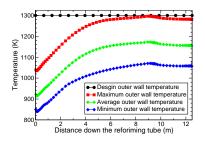
 The furnace-balancing scheme is developed based on

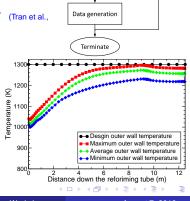
> The high-fidelity reformer CFD model (Tran et al., Chem. Eng. Sci., 2017)

 The statistical-based model identification (Tran et al., Chem. Eng. Res. Des., in press)

The furnace-balancing optimizer (Tran et al.,

Comp. & Chem. Eng., 2017)





Start

Model

identification

Balancing procedure

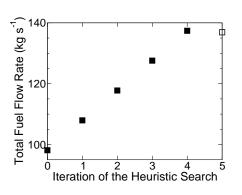
Fop

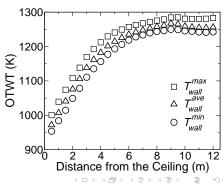
Reformer

database

### Results

- This result is obtained within a minute
- The total FSF flow rate is increased by 40% from 98.113 to 136.896 kg sec<sup>-1</sup> without damaging the reforming tubes indicated by the evidence that the maximum value in the OTWT distribution is 1288.35 K





### Conclusion

- The integrated model identification procedure is structured to be fully distributed, which allows the data-driven model for 336 reforming tubes to be derived simultaneously from the training data and independently from one another
- Leave-out-one cross validation is successfully implemented to find the optimal LASSO parameter for each reforming tube
- The results from the goodness-of-fit and out-of-sample prediction tests of the data-driven model for the OTWT distribution demonstrated the high effectiveness of the method proposed in this work

### **Acknowledgments**

Financial support from the Department of Energy is gratefully acknowledged