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Diablo Canyon Nuclear Power Plant 
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Diablo Canyon Nuclear Power Plant 

 3

146 Kilos of SF6 where released 
from the Diablo Canyon plant on 
Sept. 4, 1986 for 8 hours, starting 
at 8:00.
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Diablo Canyon Nuclear Power Plant 

 3

146 Kilos of SF6 where released 
from the Diablo Canyon plant on 
Sept. 4, 1986 for 8 hours, starting 
at 8:00.

Air samples 
were 
obtained 
from 7:00 to 
18:00 at 150 
sites. 24% 
are missing.
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FLEXPART  Simulations
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The 
FLEXPART 
simulator is 
used to 
explore the 
dispersion of 
the release.
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FLEXPART  Simulations
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The 
FLEXPART 
simulator is 
used to 
explore the 
dispersion of 
the release.
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18,000 different combinations of the 11 input parameters of 
FLEXPART  are sampled from a latin hypercube. These result 
in 18,000 plumes varying in space and time. 




Input Parameters
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Continuous Input Parameters

Input Lower Bound Upper Bound True Value
Latitude 35.1977 35.2250 35.2111
Longitude -120.87 -120.83 -120.8543
Altitude 1 10 2

Start Time 7:00 9:00 8:00
Duration 6 10 8
Amount 10 1000 146.016

Categorical Inputs

Input Number 
of values

Pre-release 
Initialization time 2
Boundary Layer 

Model 3
Nudging 3

Reanalysis 3
Land Model 3

There are five nested 
domains for WRF models. 
Each combination of the five 
categorical variables 
produces a different wind 
field at 300 meters 
resolution.



Emulator
We build an emulator for the computer output corresponding to 
location s, time t and input values x, by using the 
representation on empirical orthogonal functions
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The EOFs are calculated from the model runs

yc(s, t, x) =
kX

i=1

Ki(s, t)wi(x) + u(s, t)



Emulator
We build an emulator for the computer output corresponding to 
location s, time t and input values x, by using the 
representation on empirical orthogonal functions
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The EOFs are calculated from the model runs

yc(s, t, x) =
kX

i=1

Ki(s, t)wi(x) + u(s, t)

For the truncation we take a non-Gaussian error

This is important in order to propagate truncation uncertainty
j = 1, . . . , nx]

u(s, t) ⇠ Unif [yc(s, t, xj)�
kX

i=1

Ki(s, t)wi(xj),



Estimating the  EOF coefficients
To estimate the coefficients in the EOF we set:

 7

Regression Splines

Some
hand-picked
knots
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Basis Functions

x

h(
x)

wi(x) = ⌘i(x) + ✏i
where

⌘(x) = a0 +
MX

m=1

amBm(x)

is a representation on 
adaptive spline basis 
composed of M (unknown) 
terms, that uses products 
of hockey sticks with 
varying signs, number of 
interactions, and unknown 
knots.



Categorical an Continuous Inputs
Our application requires the emulator to handle continuous and 
categorical inputs. Assume that x1 and x2 are continuous, and x3 
and x4 are categorical, then

 8

B(x) = [s1(x1 � t1)]
↵
+[s2(x2 � t2)]

↵
+1x32C31x42C4

where t1 and t2 are the knots and
si = ±1

and Ci corresponds to one or more categories of the i-th 
variable.



Categorical an Continuous Inputs
Our application requires the emulator to handle continuous and 
categorical inputs. Assume that x1 and x2 are continuous, and x3 
and x4 are categorical, then
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• Allows for basis functions specific to some categories

• Allows for basis functions common to all categories

• Learn from the data the categorical variables in each 
basis function, if any

B(x) = [s1(x1 � t1)]
↵
+[s2(x2 � t2)]

↵
+1x32C31x42C4

where t1 and t2 are the knots and
si = ±1

and Ci corresponds to one or more categories of the i-th 
variable.



Emulation Performance

Predictions at 15 of the of the 137 locations considered for a 
held out configuration of the input parameters.
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Global Sensitivity

Analytic expressions are available for the time and space-
varying Sobol coefficients for the different inputs and 
interactions.  11
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Observation Equation 
with Gaussian error

 12

Observationsz }| {
yF (s, t) = ⇣(s, t)| {z }

True System

+

Oberv. Errorz }| {
v(s, t)

⇣(s, t) = yP (s, t, ✓)| {z }
Best Estimate

+

Discrepancyz }| {
��(s, t)

System Equation with 
additive discrepancy with 
U[0,2] multiplication 
factor

p(✓|Y F , Y C)Calibration:



Observation Equation 
with Gaussian error

 12

Observationsz }| {
yF (s, t) = ⇣(s, t)| {z }

True System

+

Oberv. Errorz }| {
v(s, t)

⇣(s, t) = yP (s, t, ✓)| {z }
Best Estimate

+

Discrepancyz }| {
��(s, t)

System Equation with 
additive discrepancy with 
U[0,2] multiplication 
factor

We estimate the discrepancy by fitting the emulator at the 
prior mean of the inputs. We then fit the discrepancy using 
adaptive splines (BASS). 𝛾 provides information about the 
relevance of the discrepancy.

p(✓|Y F , Y C)Calibration:



Posteriors for Continuous Inputs
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Posteriors for Categorical Inputs
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Calibrated Predictions
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• Adaptive regression splines have been effectively used to 
tackle an emulation and calibration problem for a massive 
computer experiment with large spatio-temporal output.

• Our method scales well to large amounts of data, 
providing accurate emulation and prediction.

• Our method can handle continuous and categorical inputs.
• We able to perform a time and space-varying sensitivity 
analysis of the inputs based on accurate analytic 
expressions for the global sensitivity coefficients.

• The method uses a fully probabilistic approach that allows 
to account for all sources of variability and provides a 
coherent quantification of the uncertainty.
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