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Predictive Modeling with Time-Varying Data is 
Ubiquitous

Time-Series Modeling is at the 
Heart of Clinical Diagnosis  

Understanding Time-Varying 
Phenomena Critical in Science
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Predictive Modeling with Time-Varying Data is 
Ubiquitous

Advances in Sensing are Driving 
IOT technologies

Speech Processing is Integral to 
Modern AI Systems

Modeling time-varying data amounts to finding mapping 
between the measurements and the dynamic system



4
LLNL-PRES-755086

▪ Creating representations for dynamic systems from observations 
is not straightforward – No known priors

▪ Complex dependencies

▪ Multi-variate measurements

▪ Irregular sampling

▪ Missing values and measurement errors

▪ Making progressive predictions is computationally expensive

Predictive Modeling with Time-Varying Data is 
Ubiquitous and Challenging
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Deep Neural Networks Have Become the De-
facto Solution for Sequence Modeling

Recurrent Neural Nets with LSTM 
or GRU units

Convolutional Neural 
Nets

Differentiable Neural 
Computers
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Rethinking Deep Models for Sequential Data
Attention Models

▪ Can we parameterize the dependencies
through simpler constructs than LSTMs?

▪ Temporal dependence can be viewed as
a “network” structure

▪ Parameterized attention models are an 
effective alternative

Loosely based on human visual 
attention

Used in NLP to enhance LSTM-
RNN by providing context
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Simply Attend and Diagnose – An Attention-only 
Architecture for Modeling EHR Data

▪ Stacked multi-head attention modules and 1D CNN feed-forward layers

▪ Encoding temporal order partially

▪ Effective training with skip connections and dropout

▪ Remarkable gains in reducing sequence modeling complexity
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*AAAI 2018

Significant Complexity Reduction and State-of-
the-art Performance

MIMIC-III Database – Largest public repository of ICU patient
records

Tasks – Mortality, length of stay, decompensation, phenotyping

State-of-the-art results in all tasks, and outperforms RNNs
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Rethinking Deep Models for Sequential Data
Learn a Metric to Compare Time-Series Data

Network

Triplet Loss

Network Network

Face Verification Face Clustering

**A not-so-trivial problem: How do we sample?
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Attention-Based Deep Metric Learning for 
Speaker Diarization

Audio track:

Diarization result:
The Question of Who 

Speaks When?
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Learned Metric Generalizes Effectively to Novel 
Data Distributions

State-of-the-art results 
in diarization with 

challenging benchmarks

* Interspeech 2018
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▪ Predictive modeling is at the heart of clinical diagnosis –
Discriminative Models

— Less robust to shifts in domain

— Prone to overfitting and sensitive to initialization, hyperparameters etc.

— Cannot deal with out-of-distribution anomalies

Rethinking Deep Models for Sequential Data
Unsupervised Pre-Training with Generative Models 

Detecting heart conditions using 
limited channel ECG

Standard 12-Channel ECG Montage
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▪ Estimate information (implicitly) about missing channels through
a generative model

Generative Models Provide a Task-Independent 
Statistical Description of the Entire Distribution

Predictive 
Model

Random forests
ResNet with 1-D CNNs

InceptionNet with 1-D CNNs

What loss to use?
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Significant Improvements in Disease Prediction 
and  Generalization

Generalization

Disease
Prediction

*IEEE EMBC 2018
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▪ Temporal modeling is a central, yet challenging problem in
science and engineering

▪ Wide-range of applications: Robust predictions, sensing limitations,
metric learning, anomaly detection, multi-task learning, correlation

studies, interpolation etc.

▪ Key advances in deep learning solutions for time-series problems:
Attention models, Deep metric learning, Generative modeling

Conclusions
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