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There are no current solutions for large 
networks with a high degree of autonomy

Optimal methods with approximate real time
solutions for large network sizes

Simple node processing/behaviors 
producing network intelligence with
provable performance bounds
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*http://www.popularmechanics.com/military/aviation/a24675/pentagon-autonomous-swarming-drones/

Challenges:
• Insufficient bandwidth to 

share all sensor data with 
other agents

• Complexity of network 
optimization grows 
exponentially with the 
number of agents

Goal is scalable, real time network adaptation and signal processing which has 
provable performance bounds.
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§ The project objectives are algorithms for “swarm” decisions which are 
— Decentralized - no central fusion, C2 node
— Scalable - solvable for large networks, provable performance bounds
— Robust - graceful degradation of network performance in the presence of 

jamming, nodes being destroyed or compromised, can operate without a 
priori information

Distributed Sensing:  How should the data collected over the entire 
network be shared/combined at individual nodes to reach good global 
decisions?

Network Adaptation:  Given all previous data and actions, how should 
the network adjust itself (position, sensing decisions, communication 
strategies) for future time steps to perform better?

Project Objectives

Project Objectives: General decentralized mathematical frameworks for robust sensing and 
network decisions for detection/estimation problems
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Sensors take measurements and form a local 
statistic
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3

Sensors take measurements and form a local 
statistic
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Data from a single sensor is used to 
form a local statistic

B. Kailkhura, P. Ray, D. Rajan, A. Yen, P. Barnes, R. Goldhahn, Byzantine-resilient collaborative autonomous detection, 2017 
IEEE Conference on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017. 
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Sensors share a function of the local messages 
from connected nodes
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how data from 
neighboring nodes is 
used

B. Kailkhura, P. Ray, D. Rajan, A. Yen, P. Barnes, R. Goldhahn, Byzantine-resilient collaborative autonomous detection, 2017 
IEEE Conference on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017. 

Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, P. Varshney, Robust Decentralized Learning Using ADMM with Unreliable Agents, 
2018 Conference on Neural Information Processing Systems (NIPS), Submitted. 
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Information propagates with latency based on 
network size and connectivity
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Decentralized algorithms trade latency for 
reduced communications overhead
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Data falsification attacks modify the value of a the 
variable shared by a compromised node
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Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, P. Varshney, Robust Decentralized Learning Using ADMM with Unreliable Agents, 
2018 Conference on Neural Information Processing Systems (NIPS), Submitted. 

Byzantine attacks inject 
false data into the network
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§ Convergence proved with noisy data in terms of network 
connectivity and noise level (convex, Lipschitz continuous fcns)

§ Bounds value of ADMM algorithm to be within a neighborhood 
of true value
— B, C are functions of the network topology/connectivity
— e is “noise” in the ADMM update variable (e.g. channel noise, decoding 

error, Byzantine attack, quantization error)  

Robust ADMM Convergence Bounds
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' + )"#$-
./$

"#$
)0.1 2. '

'

Distance from 
true value

Linear convergence, based on network 
structure and initial distance from the 
optimal value

Depends on 
network structure  
magnitude of 
”noise”

Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, P. Varshney, Robust Decentralized Learning Using ADMM with Unreliable Agents, 
2018 Conference on Neural Information Processing Systems (NIPS), Submitted. 
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Large scale simulations of collaborative 
autonomous detection using ns-3
§ Robust collaborative autonomous detection algorithms tested on large (1K 

node) networks under realistic communications conditions using a LLNL-
modified version of ns-3

§ Impact on detection performance quantified for Byzantines presence (left), 
attack strength (middle), and robust fusion rule without Byzantines (right)
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A. Yen, P. Barnes , B. Kailkhura, P. Ray, D. Rajan, K. Schmidt, R. Goldhahn, Large-scale parallel simulations of distributed 
detection algorithms for collaborative autonomous sensor networks, SPIE Disruptive Technologies in Information 
Science, May 2018. 
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Autonomous Formation (Sense + Control)

§ Sense the target (in red) and create a global formation only 
using local interactions



13
LLNL-PRES- 754591

Autonomous Multi-Target Tracking (Sense + Assign)

§ Assign agents to track multiple targets using local interactions



14
LLNL-PRES- 754591

§ Network of mobile 
sensors to:
— Detect a chemical release
— Estimate source location, 

strength

§ Reposition network to 
maximally reduce 
uncertainty in source 
location and 
concentration estimates

§ Gaussian plume model:
• A source at height h, 

stable height H, wind 
direction x

• Horizontal and vertical 
concentrations 
independent Gaussians

Application: Plume Modelling and Estimation

Sec. 2.1. Atmospheric dispersion models 21
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Figure 2.1: An illustration of the Gaussian plume model. The source has height h and
the plume ascends to a stable height H. At some distance x downwind of the source,
the horizontal and vertical concentration profiles are modeled as independent Gaussians
with standard deviations �H(x) and �V(x), respectively. We also refer to these as �y

and �z when the y-axis is in the cross-wind direction.

fluctuates randomly due to turbulence, the Gaussian plume model computes an ensem-
ble average over some sample time. Given a long enough sample time, the ensemble
average of the concentration at some downwind distance x is represented by a Gaussian
distribution in both the crosswind (y) and vertical (z) direction. We cannot obtain an
instantaneous concentration measurement profile from the Gaussian plume model as
it cannot consider temporally-varying emission rates; more complicated models will be
described for this task in later sections. By convention we place the source at (0, 0, 0)
and assume the relative measurement location (x, y, z). The expected concentration at
this location, C(x, y, z) factors into the downwind, cross-wind, and vertical coordinate
directions as follows:

C(x, y, z) = �x�y�z, (2.2)

where the C(·, ·, ·) is unitless, �x has units of m3
/m, and �y and �z both have units of

1/m.
In the x direction the plume is deterministically diluted by the wind. The source is

assumed to be emitting at some constant rate Q in m3
/s. This concentration is diluted

downwind by a wind of speed u in m/s; thus, we model the amount of pollutant per
meter in the downwind direction by

�x =
Q

u
. (2.3)

The volume of pollutant �x is then randomly and independently distributed in both
the crosswind and vertical directions. This physically corresponds to the turbulence that

Image from C.L. Dean, Efficient MCMC for Remote Sensing of Emission Sources, PhD Thesis, 2015.
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Chemical Plume with Mobile Sensors:  Results 
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Can stop sensing when future 
measurements are not worth the cost of 
collection.   
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K. Schmidt, R. C. Smith, J. Hite, J. Mattingly, Y. Azmy, D. Rajan, R. Goldhahn, “Optimal Positioning of Mobile Sensors Using 
Mutual Information,” Journal of Statistical Analysis and Data Mining, 2018, Submitted.
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Cooperative autonomous detection and 
estimation of chemical plume source parameters




