Data Science in the News

Did you know we have a monthly newsletter? View past volumes and subscribe.

DOE honors seven early-career Lab scientists

Sept. 19, 2024 - 
Seven LLNL scientists are recipients of the DOE's Office of Science Early Career Research Program (ECRP) award. Among them is Shusen Liu, a computer scientist in the Machine Intelligence Group in the Center for Applied Scientific Computing. His work focuses on understanding and interpreting the inner mechanisms of neural networks and integrating human domain knowledge with machine...

LLNL researchers unleash machine learning in designing advanced lattice structures

Aug. 22, 2024 - 
Characterized by their intricate patterns and hierarchical designs, lattice structures hold immense potential for revolutionizing industries ranging from aerospace to biomedical engineering, due to their versatility and customizability. However, the complexity of these structures and the vast design space they encompass have posed significant hurdles for engineers and scientists, and...

LLNL, DOD, NNSA dedicate Rapid Response Laboratory and supercomputing system to accelerate biodefense

Aug. 15, 2024 - 
LLNL recently welcomed officials from the Department of Defense (DOD) and National Nuclear Security Administration (NNSA) to dedicate a new supercomputing system and Rapid Response Laboratory (RRL). DOD is working with NNSA to significantly increase the computing capability available to the national biodefense programs. The collaboration has enabled expanding systems of the same architecture...

ISCP projects make machine learning advantages tangible

July 17, 2024 - 
Data science tools are not only rapidly taking hold across disciplines, they are constantly evolving. The applications, services, and techniques one cohort of scientists and engineers may have learned could be out of date by the next cohort, especially as machine learning (ML) and artificial intelligence (AI) tools become commonplace. To keep employees abreast of the latest tools, two data...

LLNL and BridgeBio announce trials for supercomputing-discovered cancer drug

June 6, 2024 - 
In a substantial milestone for supercomputing-aided drug design, LLNL and BridgeBio Oncology Therapeutics (BridgeBio) today announced clinical trials have begun for a first-in-class medication that targets specific genetic mutations implicated in many types of cancer. The development of the new drug—BBO-8520—is the result of collaboration among LLNL, BridgeBio and the National Cancer...

The Laboratory’s habit of innovation

June 4, 2024 - 
LLNL’s HPC and data science capabilities play a significant role in international science research and innovation, and Lab researchers have won 10 R&D 100 Awards in the Software–Services category in the past decade. The latest issue of Science & Technology Review features several award-winning projects, including ZFP and CANDLE: (1) ZFP introduces a new method of compressing large data sets...

Manufacturing optimized designs for high explosives

May 13, 2024 - 
When materials are subjected to extreme environments, they face the risk of mixing together. This mixing may result in hydrodynamic instabilities, yielding undesirable side effects. Such instabilities present a grand challenge across multiple disciplines, especially in astrophysics, combustion, and shaped charges—a device used to focus the energy of a detonating explosive, thereby creating a...

Accelerating material characterization: Machine learning meets X-ray absorption spectroscopy

May 10, 2024 - 
LLNL scientists have developed a new approach that can rapidly predict the structure and chemical composition of heterogeneous materials. In a new study in ACS Chemistry of Materials, Wonseok Jeong and Tuan Anh Pham developed a new approach that combines machine learning with X-ray absorption spectroscopy (XANES) to elucidate the chemical speciation of amorphous carbon nitrides. The research...

GUIDE team develops approach to redesign antibodies against viral pandemics

May 8, 2024 - 
In a groundbreaking development for addressing future viral pandemics, a multi-institutional team involving LLNL researchers has successfully combined an AI-backed platform with supercomputing to redesign and restore the effectiveness of antibodies whose ability to fight viruses has been compromised by viral evolution. The team’s research is published in the journal Nature and showcases a...

Will it bend? Reinforcement learning optimizes metamaterials

Dec. 13, 2023 - 
Lawrence Livermore staff scientist Xiaoxing Xia collaborated with the Technical University of Denmark to integrate machine learning (ML) and 3D printing techniques. The effort naturally follows Xia’s PhD work in materials science at the California Institute of Technology, where he investigated electrochemically reconfigurable structures. In a paper published in the Journal of Materials...

Conference paper illuminates neural image compression

Dec. 8, 2023 - 
An enduring question in machine learning (ML) concerns performance: How do we know if a model produces reliable results? The best models have explainable logic and can withstand data perturbations, but performance analysis tools and datasets that will help researchers meaningfully evaluate these models are scarce. A team from LLNL’s Center for Applied Scientific Computing (CASC) is teasing...

Data Days brings DOE labs together for discussions on data management and more

Nov. 9, 2023 - 
Data researchers, developers, data managers, and program managers from the DOE national laboratories visited LLNL on October 24–26 to discuss the latest in data management, sharing, and accessibility at the 2023 DOE Data Days (D3) workshop. Sponsored by the National Nuclear Security Administration’s (NNSA) Office of Defense Nuclear Nonproliferation and hosted annually by LLNL, the event...

LLNL, University of California partner for AI-driven additive manufacturing research

Sept. 27, 2023 - 
Grace Gu, a faculty member in mechanical engineering at UC Berkeley, has been selected as the inaugural recipient of the LLNL Early Career UC Faculty Initiative. The initiative is a joint endeavor between LLNL’s Strategic Deterrence Principal Directorate and UC national laboratories at the University of California Office of the President, seeking to foster long-term academic partnerships and...

Making machine learning safer for biomedicine

Aug. 15, 2023 - 
It’s hard to understate the impact machine learning will have on biomedicine. The ability to train computers to spot patterns by analyzing large, complex datasets is driving discoveries in heart disease, cancer, neurodegenerative diseases and more. For instance, Argonne National Laboratory (ANL) has used machine learning to aid cancer research and accelerate COVID-19 antiviral discovery. One...

Explainable artificial intelligence can enhance scientific workflows

July 25, 2023 - 
As ML and AI tools become more widespread, a team of researchers in LLNL’s Computing and Physical and Life Sciences directorates are trying to provide a reasonable starting place for scientists who want to apply ML/AI, but don’t have the appropriate background. The team’s work grew out of a Laboratory Directed Research and Development project on feedstock materials optimization, which led to...

Machine learning reveals refreshing understanding of confined water

July 24, 2023 - 
LLNL scientists combined large-scale molecular dynamics simulations with machine learning interatomic potentials derived from first-principles calculations to examine the hydrogen bonding of water confined in carbon nanotubes (CNTs). They found that the narrower the diameter of the CNT, the more the water structure is affected in a highly complex and nonlinear fashion. The research appears on...

Visionary report unveils ambitious roadmap to harness the power of AI in scientific discovery

June 12, 2023 - 
A new report, the product of a series of workshops held in 2022 under the guidance of the U.S. Department of Energy’s Office of Science and the National Nuclear Security Administration, lays out a comprehensive vision for the Office of Science and NNSA to expand their work in scientific use of AI by building on existing strengths in world-leading high performance computing systems and data...

LLNL and SambaNova Systems announce additional AI hardware to support Lab’s cognitive simulation efforts

May 23, 2023 - 
LLNL and SambaNova Systems have announced the addition of a spatial data flow accelerator into the Livermore Computing Center, part of an effort to upgrade the Lab’s CogSim program. LLNL will integrate the new hardware to further investigate CogSim approaches combining AI with high-performance computing—and how deep neural network hardware architectures can accelerate traditional physics...

Computing codes, simulations helped make ignition possible

April 6, 2023 - 
Harkening back to the genesis of LLNL’s inertial confinement fusion (ICF) program, codes have played an essential role in simulating the complex physical processes that take place in an ICF target and the facets of each experiment that must be nearly perfect. Many of these processes are too complicated, expensive, or even impossible to predict through experiments alone. With only a few...

Fueling up hydrogen production

April 3, 2023 - 
Through machine learning, an LLNL scientist has a better grasp of understanding materials used to produce hydrogen fuel. The interaction of water with TiO2 (titanium oxide) surfaces is especially important in various scientific fields and applications, from photocatalysis for hydrogen production to photooxidation of organic pollutants to self-cleaning surfaces and biomedical devices. However...