Data Science in the News

Did you know we have a monthly newsletter? View past volumes and subscribe.

ISCP projects make machine learning advantages tangible

July 17, 2024 - 
Data science tools are not only rapidly taking hold across disciplines, they are constantly evolving. The applications, services, and techniques one cohort of scientists and engineers may have learned could be out of date by the next cohort, especially as machine learning (ML) and artificial intelligence (AI) tools become commonplace. To keep employees abreast of the latest tools, two data...

AI, fusion, and national security with Brian Spears (VIDEO)

July 13, 2024 - 
This episode of the Eye on AI podcast delves into the cutting-edge world of AI and high-performance computing with Brian Spears, director of LLNL's AI Innovation Incubator. The episode is presented here as a video with the following description: "Brian shares his experience in driving AI into national security science and managing the nation’s nuclear stockpile. With a PhD in mechanical...

Signal and image science community comes together for annual workshop

June 26, 2024 - 
Nearly 150 members of the signal and image science community recently came together to discuss the latest advances in the field and connect with colleagues, friends, and potential collaborators at the 28th annual Center for Advanced Signal and Image Science (CASIS) workshop. The event featured more than 50 technical contributions across six workshop tracks and a parallel tutorials session...

The surprising places you’ll find machine learning (VIDEO)

June 20, 2024 - 
LLNL data scientists are applying ML to real-world applications on multiple scales. A new DSI-funded video highlights research at the nanoscale (developing better water treatment methods by predicting the behavior of water molecules under the extremely confined conditions of nanotubes); mesoscale (determining the likelihood and location of a dangerous wildfire-causing phenomenon called arcing...

LLNL and BridgeBio announce trials for supercomputing-discovered cancer drug

June 6, 2024 - 
In a substantial milestone for supercomputing-aided drug design, LLNL and BridgeBio Oncology Therapeutics (BridgeBio) today announced clinical trials have begun for a first-in-class medication that targets specific genetic mutations implicated in many types of cancer. The development of the new drug—BBO-8520—is the result of collaboration among LLNL, BridgeBio and the National Cancer...

The Laboratory’s habit of innovation

June 4, 2024 - 
LLNL’s HPC and data science capabilities play a significant role in international science research and innovation, and Lab researchers have won 10 R&D 100 Awards in the Software–Services category in the past decade. The latest issue of Science & Technology Review features several award-winning projects, including ZFP and CANDLE: (1) ZFP introduces a new method of compressing large data sets...

Machine learning optimizes high-power laser experiments

May 17, 2024 - 
Commercial fusion energy plants and advanced compact radiation sources may rely on high-intensity, high-repetition rate lasers, capable of firing multiple times per second, but humans could be a limiting factor in reacting to changes at these shot rates. Applying advanced computing to this problem, a team of international scientists from LLNL, Fraunhofer Institute for Laser Technology (ILT)...

Manufacturing optimized designs for high explosives

May 13, 2024 - 
When materials are subjected to extreme environments, they face the risk of mixing together. This mixing may result in hydrodynamic instabilities, yielding undesirable side effects. Such instabilities present a grand challenge across multiple disciplines, especially in astrophysics, combustion, and shaped charges—a device used to focus the energy of a detonating explosive, thereby creating a...

Harnessing the power of AI for a safe and secure future (VIDEO)

May 13, 2024 - 
LLNL, alongside the Department of Energy’s (DOE’s) 17 national labs, is harnessing the transformative potential of AI for a safer, more secure future. In 2022, LLNL made history by achieving fusion ignition, marking a pivotal moment for national security and clean energy. While AI continues to unlock new insights into fusion, through the combination of cutting-edge computer modeling...

Accelerating material characterization: Machine learning meets X-ray absorption spectroscopy

May 10, 2024 - 
LLNL scientists have developed a new approach that can rapidly predict the structure and chemical composition of heterogeneous materials. In a new study in ACS Chemistry of Materials, Wonseok Jeong and Tuan Anh Pham developed a new approach that combines machine learning with X-ray absorption spectroscopy (XANES) to elucidate the chemical speciation of amorphous carbon nitrides. The research...

Igniting scientific discovery with AI and supercomputing (VIDEO)

April 15, 2024 - 
LLNL’s fusion ignition breakthrough, more than 60 years in the making, was enabled by a combination of traditional fusion target design methods, high-performance computing (HPC), and AI techniques. The success of ignition marks a significant milestone in fusion energy research, and was facilitated in part by the precision simulations and rapid experimental data analysis only possible through...

Predicting climate change impacts on infrastructure (VIDEO)

Feb. 26, 2024 - 
At LLNL, electrical grid experts and climate scientists work together to bridge the gap between infrastructure and climate modeling. By taking weather variables such as wildfire, flooding, wind, and sunlight that directly impact the electrical grid into consideration, researchers can improve electrical grid model projections for a more stable future. In a new video, LLNL computer scientist...

Machine learning tool fills in the blanks for satellite light curves

Feb. 13, 2024 - 
When viewed from Earth, objects in space are seen at a specific brightness, called apparent magnitude. Over time, ground-based telescopes can track a specific object’s change in brightness. This time-dependent magnitude variation is known as an object’s light curve, and can allow astronomers to infer the object’s size, shape, material, location, and more. Monitoring the light curve of...

Will it bend? Reinforcement learning optimizes metamaterials

Dec. 13, 2023 - 
Lawrence Livermore staff scientist Xiaoxing Xia collaborated with the Technical University of Denmark to integrate machine learning (ML) and 3D printing techniques. The effort naturally follows Xia’s PhD work in materials science at the California Institute of Technology, where he investigated electrochemically reconfigurable structures. In a paper published in the Journal of Materials...

Conference paper illuminates neural image compression

Dec. 8, 2023 - 
An enduring question in machine learning (ML) concerns performance: How do we know if a model produces reliable results? The best models have explainable logic and can withstand data perturbations, but performance analysis tools and datasets that will help researchers meaningfully evaluate these models are scarce. A team from LLNL’s Center for Applied Scientific Computing (CASC) is teasing...

LLNL’s Kailkhura elevated to IEEE senior member

Nov. 8, 2023 - 
IEEE, the world’s largest technical professional organization, has elevated LLNL research staff member Bhavya Kailkhura to the grade of senior member within the organization. IEEE has more than 427,000 members in more than 190 countries, including engineers, scientists and allied professionals in the electrical and computer sciences, engineering and related disciplines. Just 10% of IEEE’s...

LLNL, University of California partner for AI-driven additive manufacturing research

Sept. 27, 2023 - 
Grace Gu, a faculty member in mechanical engineering at UC Berkeley, has been selected as the inaugural recipient of the LLNL Early Career UC Faculty Initiative. The initiative is a joint endeavor between LLNL’s Strategic Deterrence Principal Directorate and UC national laboratories at the University of California Office of the President, seeking to foster long-term academic partnerships and...

Making machine learning safer for biomedicine

Aug. 15, 2023 - 
It’s hard to understate the impact machine learning will have on biomedicine. The ability to train computers to spot patterns by analyzing large, complex datasets is driving discoveries in heart disease, cancer, neurodegenerative diseases and more. For instance, Argonne National Laboratory (ANL) has used machine learning to aid cancer research and accelerate COVID-19 antiviral discovery. One...

UC Merced & UC Riverside tackle Data Science Challenge on ML-assisted heart modeling

Aug. 3, 2023 - 
For the first time, students from the University of California (UC) Merced and UC Riverside joined forces for the two-week Data Science Challenge (DSC) at LLNL, tackling a real-world problem in machine learning (ML)-assisted heart modeling. Held in the Livermore Valley Open Campus’s newly remodeled University of California Livermore Collaboration Center from July 10-21, the event brought...

Explainable artificial intelligence can enhance scientific workflows

July 25, 2023 - 
As ML and AI tools become more widespread, a team of researchers in LLNL’s Computing and Physical and Life Sciences directorates are trying to provide a reasonable starting place for scientists who want to apply ML/AI, but don’t have the appropriate background. The team’s work grew out of a Laboratory Directed Research and Development project on feedstock materials optimization, which led to...