Did you know we have a monthly newsletter? View past volumes and subscribe.
DSI Consulting Service spurs innovation
Nov. 22, 2024 -
Today, research in nearly every scientific discipline involves data science techniques. Whether using sophisticated tools to manage and analyze massive datasets or applying machine learning algorithms to gain new insights, such techniques are becoming ever more prevalent. However, scientists and engineers may not have specific training in the newest, most pertinent data science and...
El Capitan verified as world's fastest supercomputer
Nov. 18, 2024 -
LLNL, in collaboration with the National Nuclear Security Administration (NNSA), Hewlett Packard Enterprise and AMD, have officially unveiled El Capitan as the world's most powerful supercomputer and first exascale system dedicated to national security. Verified at 1.742 exaflops (1.742 quintillion calculations per second) on the High Performance Linpack—the standard benchmark used by the...
ICECap looks to use exascale fusion simulations to pioneer digital design
Oct. 17, 2024 -
A groundbreaking multidisciplinary team of LLNL researchers is combining the power of exascale computing with AI, advanced workflows and graphics processor (GPU)-acceleration to advance scientific innovation and revolutionize digital design. The project, called ICECap (Inertial Confinement on El Capitan), is a transformative approach to inertial confinement fusion (ICF) design optimization...
LLNL researchers unleash machine learning in designing advanced lattice structures
Aug. 22, 2024 -
Characterized by their intricate patterns and hierarchical designs, lattice structures hold immense potential for revolutionizing industries ranging from aerospace to biomedical engineering, due to their versatility and customizability. However, the complexity of these structures and the vast design space they encompass have posed significant hurdles for engineers and scientists, and...
LLNL, DOD, NNSA dedicate Rapid Response Laboratory and supercomputing system to accelerate biodefense
Aug. 15, 2024 -
LLNL recently welcomed officials from the Department of Defense (DOD) and National Nuclear Security Administration (NNSA) to dedicate a new supercomputing system and Rapid Response Laboratory (RRL). DOD is working with NNSA to significantly increase the computing capability available to the national biodefense programs. The collaboration has enabled expanding systems of the same architecture...
Evaluating trust and safety of large language models
Aug. 8, 2024 -
Accepted to the 2024 International Conference on Machine Learning, two Livermore papers examined trustworthiness—how a model uses data and makes decisions—of large language models, or LLMs. In “TrustLLM: Trustworthiness in Large Language Models,” Bhavya Kailkhura and collaborators from universities and research organizations around the world developed a comprehensive trustworthiness...
ISCP projects make machine learning advantages tangible
July 17, 2024 -
Data science tools are not only rapidly taking hold across disciplines, they are constantly evolving. The applications, services, and techniques one cohort of scientists and engineers may have learned could be out of date by the next cohort, especially as machine learning (ML) and artificial intelligence (AI) tools become commonplace.
To keep employees abreast of the latest tools, two data...
Signal and image science community comes together for annual workshop
June 26, 2024 -
Nearly 150 members of the signal and image science community recently came together to discuss the latest advances in the field and connect with colleagues, friends, and potential collaborators at the 28th annual Center for Advanced Signal and Image Science (CASIS) workshop. The event featured more than 50 technical contributions across six workshop tracks and a parallel tutorials session...
LLNL and BridgeBio announce trials for supercomputing-discovered cancer drug
June 6, 2024 -
In a substantial milestone for supercomputing-aided drug design, LLNL and BridgeBio Oncology Therapeutics (BridgeBio) today announced clinical trials have begun for a first-in-class medication that targets specific genetic mutations implicated in many types of cancer. The development of the new drug—BBO-8520—is the result of collaboration among LLNL, BridgeBio and the National Cancer...
Statistical framework synchronizes medical study data
June 3, 2024 -
The risks and benefits of heart surgery, chemotherapy, vaccination, and other medical treatments can change based on the time of day they are administered. These variations arise in part due to changes in gene expression levels throughout the 24-hour day-night cycle, with around 50% of genes displaying oscillatory behavior.
To evaluate new therapies, investigators study how a gene’s...
Manufacturing optimized designs for high explosives
May 13, 2024 -
When materials are subjected to extreme environments, they face the risk of mixing together. This mixing may result in hydrodynamic instabilities, yielding undesirable side effects. Such instabilities present a grand challenge across multiple disciplines, especially in astrophysics, combustion, and shaped charges—a device used to focus the energy of a detonating explosive, thereby creating a...
Accelerating material characterization: Machine learning meets X-ray absorption spectroscopy
May 10, 2024 -
LLNL scientists have developed a new approach that can rapidly predict the structure and chemical composition of heterogeneous materials. In a new study in ACS Chemistry of Materials, Wonseok Jeong and Tuan Anh Pham developed a new approach that combines machine learning with X-ray absorption spectroscopy (XANES) to elucidate the chemical speciation of amorphous carbon nitrides. The research...
Machine learning tool fills in the blanks for satellite light curves
Feb. 13, 2024 -
When viewed from Earth, objects in space are seen at a specific brightness, called apparent magnitude. Over time, ground-based telescopes can track a specific object’s change in brightness. This time-dependent magnitude variation is known as an object’s light curve, and can allow astronomers to infer the object’s size, shape, material, location, and more. Monitoring the light curve of...
Will it bend? Reinforcement learning optimizes metamaterials
Dec. 13, 2023 -
Lawrence Livermore staff scientist Xiaoxing Xia collaborated with the Technical University of Denmark to integrate machine learning (ML) and 3D printing techniques. The effort naturally follows Xia’s PhD work in materials science at the California Institute of Technology, where he investigated electrochemically reconfigurable structures. In a paper published in the Journal of Materials...
Data Days brings DOE labs together for discussions on data management and more
Nov. 9, 2023 -
Data researchers, developers, data managers, and program managers from the DOE national laboratories visited LLNL on October 24–26 to discuss the latest in data management, sharing, and accessibility at the 2023 DOE Data Days (D3) workshop. Sponsored by the National Nuclear Security Administration’s (NNSA) Office of Defense Nuclear Nonproliferation and hosted annually by LLNL, the event...
LLNL, University of California partner for AI-driven additive manufacturing research
Sept. 27, 2023 -
Grace Gu, a faculty member in mechanical engineering at UC Berkeley, has been selected as the inaugural recipient of the LLNL Early Career UC Faculty Initiative. The initiative is a joint endeavor between LLNL’s Strategic Deterrence Principal Directorate and UC national laboratories at the University of California Office of the President, seeking to foster long-term academic partnerships and...
Explainable artificial intelligence can enhance scientific workflows
July 25, 2023 -
As ML and AI tools become more widespread, a team of researchers in LLNL’s Computing and Physical and Life Sciences directorates are trying to provide a reasonable starting place for scientists who want to apply ML/AI, but don’t have the appropriate background. The team’s work grew out of a Laboratory Directed Research and Development project on feedstock materials optimization, which led to...
Machine learning reveals refreshing understanding of confined water
July 24, 2023 -
LLNL scientists combined large-scale molecular dynamics simulations with machine learning interatomic potentials derived from first-principles calculations to examine the hydrogen bonding of water confined in carbon nanotubes (CNTs). They found that the narrower the diameter of the CNT, the more the water structure is affected in a highly complex and nonlinear fashion. The research appears on...
High-performance computing, AI and cognitive simulation helped LLNL conquer fusion ignition
June 21, 2023 -
For hundreds of LLNL scientists on the design, experimental, and modeling and simulation teams behind inertial confinement fusion (ICF) experiments at the National Ignition Facility, the results of the now-famous Dec. 5, 2022, ignition shot didn’t come as a complete surprise. The “crystal ball” that gave them increased pre-shot confidence in a breakthrough involved a combination of detailed...
Visionary report unveils ambitious roadmap to harness the power of AI in scientific discovery
June 12, 2023 -
A new report, the product of a series of workshops held in 2022 under the guidance of the U.S. Department of Energy’s Office of Science and the National Nuclear Security Administration, lays out a comprehensive vision for the Office of Science and NNSA to expand their work in scientific use of AI by building on existing strengths in world-leading high performance computing systems and data...