LLNL, DOD, NNSA dedicate Rapid Response Laboratory and supercomputing system to accelerate biodefense

Aug. 15, 2024- 
LLNL recently welcomed officials from the Department of Defense (DOD) and National Nuclear Security Administration (NNSA) to dedicate a new supercomputing system and Rapid Response Laboratory (RRL). DOD is working with NNSA to significantly increase the computing capability available to the national biodefense programs. The collaboration has enabled expanding systems of the same architecture...

LLNL and BridgeBio announce trials for supercomputing-discovered cancer drug

June 6, 2024- 
In a substantial milestone for supercomputing-aided drug design, LLNL and BridgeBio Oncology Therapeutics (BridgeBio) today announced clinical trials have begun for a first-in-class medication that targets specific genetic mutations implicated in many types of cancer. The development of the new drug—BBO-8520—is the result of collaboration among LLNL, BridgeBio and the National Cancer...

The Laboratory’s habit of innovation

June 4, 2024- 
LLNL’s HPC and data science capabilities play a significant role in international science research and innovation, and Lab researchers have won 10 R&D 100 Awards in the Software–Services category in the past decade. The latest issue of Science & Technology Review features several award-winning projects, including ZFP and CANDLE: (1) ZFP introduces a new method of compressing large data sets...

GUIDE team develops approach to redesign antibodies against viral pandemics

May 8, 2024- 
In a groundbreaking development for addressing future viral pandemics, a multi-institutional team involving LLNL researchers has successfully combined an AI-backed platform with supercomputing to redesign and restore the effectiveness of antibodies whose ability to fight viruses has been compromised by viral evolution. The team’s research is published in the journal Nature and showcases a...

Making machine learning safer for biomedicine

Aug. 15, 2023- 
It’s hard to understate the impact machine learning will have on biomedicine. The ability to train computers to spot patterns by analyzing large, complex datasets is driving discoveries in heart disease, cancer, neurodegenerative diseases and more. For instance, Argonne National Laboratory (ANL) has used machine learning to aid cancer research and accelerate COVID-19 antiviral discovery. One...

Scientists develop model for more efficient simulations of protein interactions linked to cancer

March 28, 2023- 
LLNL scientists have developed a theoretical model for more efficient molecular-level simulations of cell membranes and their lipid-protein interactions, part of a multi-institutional effort to better understand the behavior of cancer-causing membrane proteins. Developed under an ongoing collaboration by the Department of Energy and the National Cancer Institute (NCI) aimed at modeling cell...

LLNL cancer research goes exascale

July 20, 2022- 
An LLNL team will be among the first researchers to perform work on the world’s first exascale supercomputer—Oak Ridge National Laboratory’s Frontier—when they use the system to model cancer-causing protein mutations. Led by Harsh Bhatia, a computer scientist in the Center of Applied Computing at LLNL, the team was awarded limited access to Frontier under the DOE's Advanced Scientific...

UC Merced students work with LLNL mentors on potential new drugs to combat COVID-19

June 30, 2022- 
Students from the University of California, Merced worked with mentors at LLNL to identify drug compounds that could be used to treat COVID-19 during a two-week Data Science Challenge (DSC) that concluded on June 6. For the first time in the DSC series since the COVID-19 pandemic began in 2020, Lab mentors visited the college campus to provide in-person guidance for five teams of UC Merced...

LLNL’s Brase discusses advances by ATOM in accelerating drug discovery pipeline

June 7, 2022- 
The private-public Accelerating Therapeutic Opportunities in Medicine (ATOM) consortium is showing “significant” progress in demonstrating that HPC and M) tools can speed up the drug discovery process, said Jim Brase, ATOM co-lead and LLNL’s deputy associate director for data science. The consortium currently boasts more than a dozen member organizations, including national laboratories...

Kevin McLoughlin applies computational biology to complex problems

May 17, 2022- 
Kevin McLoughlin has always been fascinated by the intersection of computing and biology. His LLNL career encompasses award-winning microbial detection technology, a COVID-19 antiviral drug design pipeline, and work with the ATOM consortium. The appeal for him in these projects lies at the intersection of computing and biology. “I love finding ways to visualize data that reveal relationships...

Accelerating the path to precision medicine

March 22, 2022- 
LLNL joined the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) consortium in 2018. The national, multiyear, multidisciplinary effort, led by the University of California at San Francisco in collaboration with Lawrence Berkeley and Argonne national laboratories and other leading research organizations and universities, combines neuroimaging, blood-based...

Machine learning model finds COVID-19 risks for cancer patients

March 10, 2022- 
A new study by researchers at LLNL and the University of California, San Francisco, looks to identify cancer-related risks for poor outcomes from COVID-19. Analyzing one of the largest databases of patients with cancer and COVID-19, the team found previously unreported links between a rare type of cancer—as well as two cancer treatment-related drugs—and an increased risk of hospitalization...

LLNL team models COVID-19 disease progression and identifies risk factors

Feb. 15, 2022- 
An LLNL team has developed a comprehensive dynamic model of COVID-19 disease progression in hospitalized patients, finding that risk factors for complications from the disease are dependent on the patient’s disease state. Using a machine learning algorithm on a dataset of electronic health records from more than 1,300 hospitalized COVID-19 patients with ProMedica — the largest health care...

COVID-19 R&D: Computing responds to pandemic

Jan. 19, 2022- 
When the COVID-19 pandemic began, the Laboratory immediately started seeking solutions to the myriad challenges posed by the global crisis. The Computing Directorate jumped right in with research and development activities that combine molecular screening to inform antiviral drug experimentation; a generative molecular design software platform to optimize properties of antiviral drugs; an...

Unprecedented multiscale model of protein behavior linked to cancer-causing mutations

Jan. 10, 2022- 
LLNL researchers and a multi-institutional team have developed a highly detailed, machine learning–backed multiscale model revealing the importance of lipids to the signaling dynamics of RAS, a family of proteins whose mutations are linked to numerous cancers. Published by the Proceedings of the National Academy of Sciences, the paper details the methodology behind the Multiscale Machine...

Digital twins for cancer patients could be ‘paradigm shift’ for predictive oncology

Dec. 16, 2021- 
A multi-institutional team, including an LLNL contributor, has proposed a framework for digital twin models of cancer patients that researchers say would create a “paradigm shift” for predictive oncology. Published online Nature Medicine on November 25, the proposed framework for Cancer Patient Digital Twins (CPDTs) — virtual representations of cancer patients using real-time data — would...

LLNL joins Human Vaccines Project to accelerate vaccine development and understanding of immune response

Oct. 21, 2021- 
LLNL has joined the international Human Vaccines Project (HVP), bringing Lab expertise and computing resources to the consortium to aid development of a universal coronavirus vaccine and improve understanding of immune response. The HVP is a nonprofit, public-private partnership with a mission to decode the human immune system and accelerate the development of vaccines and immunotherapies...

Tackling the COVID-19 pandemic

Oct. 11, 2021- 
To help the U.S. fight the COVID-19 pandemic, LLNL did what it does best: quickly bring together interdisciplinary teams and diverse technologies to address urgent national challenges. This effort includes applying advanced high-performance computing resources to biological research and anayzing complicated computer models and enormous datasets. Read more in Science & Technology Review.

Inaugural industry forum inspires ML community

Sept. 16, 2021- 
LLNL held its first-ever Machine Learning for Industry Forum (ML4I) on August 10–12. Co-hosted by the Lab’s High-Performance Computing Innovation Center (HPCIC) and Data Science Institute (DSI), the virtual event brought together more than 500 enrollees from the Department of Energy (DOE) complex, commercial companies, professional societies, and academia. Industry sponsors included...

60 years of cancer research

Sept. 10, 2021- 
From studying radioactive isotope effects to better understanding cancer metastasis, the Laboratory’s relationship with cancer research endures some 60 years after it began, with historical precedent underpinning exciting new research areas. In one Cancer Moonshot project, research includes a close synergy between experiments and computation, allowing scientists to get a better picture of the...