Data Science in the News

Did you know we have a monthly newsletter? View past volumes and subscribe.

LLNL, DOD, NNSA dedicate Rapid Response Laboratory and supercomputing system to accelerate biodefense

Aug. 15, 2024 - 
LLNL recently welcomed officials from the Department of Defense (DOD) and National Nuclear Security Administration (NNSA) to dedicate a new supercomputing system and Rapid Response Laboratory (RRL). DOD is working with NNSA to significantly increase the computing capability available to the national biodefense programs. The collaboration has enabled expanding systems of the same architecture...

Data Science Challenge sees summer surge

Aug. 14, 2024 - 
Lawrence Livermore welcomed students from four institutions for this year’s Data Science Challenge (DSC) internship program. Hosted by the DSI, the DSC gives undergraduate and graduate students a taste of the multidisciplinary research performed at national laboratories. In addition to UC Merced and UC Riverside, participants hailed from two new partnering institutions: Case Western Reserve...

Evaluating trust and safety of large language models

Aug. 8, 2024 - 
Accepted to the 2024 International Conference on Machine Learning, two Livermore papers examined trustworthiness—how a model uses data and makes decisions—of large language models, or LLMs. In “TrustLLM: Trustworthiness in Large Language Models,” Bhavya Kailkhura and collaborators from universities and research organizations around the world developed a comprehensive trustworthiness...

Probing carbon capture, atom-by-atom

July 31, 2024 - 
A team of scientists at LLNL has developed a machine-learning model to gain an atomic-level understanding of CO2 capture in amine-based sorbents. This innovative approach promises to enhance the efficiency of direct air capture (DAC) technologies, which are crucial for reducing the excessive amounts of CO2 already present in the atmosphere. The low cost of these sorbents has enabled several...

ISCP projects make machine learning advantages tangible

July 17, 2024 - 
Data science tools are not only rapidly taking hold across disciplines, they are constantly evolving. The applications, services, and techniques one cohort of scientists and engineers may have learned could be out of date by the next cohort, especially as machine learning (ML) and artificial intelligence (AI) tools become commonplace. To keep employees abreast of the latest tools, two data...

Signal and image science community comes together for annual workshop

June 26, 2024 - 
Nearly 150 members of the signal and image science community recently came together to discuss the latest advances in the field and connect with colleagues, friends, and potential collaborators at the 28th annual Center for Advanced Signal and Image Science (CASIS) workshop. The event featured more than 50 technical contributions across six workshop tracks and a parallel tutorials session...

The surprising places you’ll find machine learning (VIDEO)

June 20, 2024 - 
LLNL data scientists are applying ML to real-world applications on multiple scales. A new DSI-funded video highlights research at the nanoscale (developing better water treatment methods by predicting the behavior of water molecules under the extremely confined conditions of nanotubes); mesoscale (determining the likelihood and location of a dangerous wildfire-causing phenomenon called arcing...

DOE, LLNL take center stage at inaugural AI expo

June 4, 2024 - 
Held May 7–8 in Washington, DC, the Special Competitive Studies Project (SCSP) AI Expo showcased groundbreaking initiatives in AI and emerging technologies. Kim Budil and other Lab speakers presented at center stage and the DOE exhibition booth. LLNL is rapidly expanding research investments to build transformative AI-driven solutions to critical national security challenges. While developing...

Statistical framework synchronizes medical study data

June 3, 2024 - 
The risks and benefits of heart surgery, chemotherapy, vaccination, and other medical treatments can change based on the time of day they are administered. These variations arise in part due to changes in gene expression levels throughout the 24-hour day-night cycle, with around 50% of genes displaying oscillatory behavior. To evaluate new therapies, investigators study how a gene’s...

Welcome new DSI team members

April 2, 2024 - 
When Data Science Institute (DSI) director Brian Giera and deputy director Cindy Gonzales began planning activities for fiscal year 2024 and beyond, they immediately realized that LLNL’s growth in data science and artificial intelligence (AI)/machine learning (ML) research requires corresponding growth in the DSI’s efforts. “Our field is booming,” Giera states. “The Lab has a stake in the...

WiDS Livermore conference attendees network, share research and absorb wisdom

March 27, 2024 - 
Co-sponsored by the DSI, LLNL on March 13 hosted the 7th annual Women in Data Science (WiDS) conference for data scientists, industry professionals, recent graduates and others interested in the field. As an independent satellite of the global WiDS conference celebrating International Women’s Day, the Livermore hybrid event was held to highlight the work and careers of LLNL and regional data...

Machine learning tool fills in the blanks for satellite light curves

Feb. 13, 2024 - 
When viewed from Earth, objects in space are seen at a specific brightness, called apparent magnitude. Over time, ground-based telescopes can track a specific object’s change in brightness. This time-dependent magnitude variation is known as an object’s light curve, and can allow astronomers to infer the object’s size, shape, material, location, and more. Monitoring the light curve of...

Register for WiDS Livermore on March 13

Feb. 8, 2024 - 
The annual Women in Data Science (WiDS) conference returns on Wednesday, March 13. This is the seventh year for WiDS Livermore, which is independently organized by LLNL to be part of the mission to increase participation of women in data science and to feature outstanding women doing outstanding work. The all-day WiDS Livermore event is free and will be presented in a hybrid format. Everyone...

Will it bend? Reinforcement learning optimizes metamaterials

Dec. 13, 2023 - 
Lawrence Livermore staff scientist Xiaoxing Xia collaborated with the Technical University of Denmark to integrate machine learning (ML) and 3D printing techniques. The effort naturally follows Xia’s PhD work in materials science at the California Institute of Technology, where he investigated electrochemically reconfigurable structures. In a paper published in the Journal of Materials...

Conference paper illuminates neural image compression

Dec. 8, 2023 - 
An enduring question in machine learning (ML) concerns performance: How do we know if a model produces reliable results? The best models have explainable logic and can withstand data perturbations, but performance analysis tools and datasets that will help researchers meaningfully evaluate these models are scarce. A team from LLNL’s Center for Applied Scientific Computing (CASC) is teasing...

For better CT images, new deep learning tool helps fill in the blanks

Nov. 17, 2023 - 
At a hospital, an airport, or even an assembly line, computed tomography (CT) allows us to investigate the otherwise inaccessible interiors of objects without laying a finger on them. To perform CT, x-rays first shine through an object, interacting with the different materials and structures inside. Then, the x-rays emerge on the other side, casting a projection of their interactions onto a...

Lab partners with new Space Force Lab

Nov. 14, 2023 - 
LLNL subject matter experts have been selected by the U.S. Space Force to help stand up its newest Tools, Applications, and Processing (TAP) laboratory dedicated to advancing military space domain awareness (SDA). The Livermore team attended the October 26 kickoff in Colorado Springs of the SDA TAP lab’s Project Apollo technology accelerator, designed with an open framework to support and...

Young leaders learn from Nobel Laureates at Science and Technology in Society Forum

Oct. 24, 2023 - 
Early-career staff scientists Kelli Humbird, Chris Young and Brian Giera (director of LLNL's Data Science Institute) connected with Nobel Laureates and discussed important global issues ranging from AI to climate change at the 20th annual meeting of the Science and Technology in Society (STS) Forum in Kyoto, Japan. Lab Director Kim Budil, Acting Chief of Staff Ashley Bahney and Strategic...

Data Science Summer Institute hosts student interns from Japan

Oct. 13, 2023 - 
The Data Science Summer Institute (DSSI) hosted summer student interns from Japan on-site for the first time, where the students worked with Lab mentors on real-world projects in AI-assisted bio-surveillance and automated 3D printing. From June to September, the three students—Raiki Yoshimura, Shinnosuke Sawano and Taisei Saida—lived in rental apartments near the Lab and worked at the Lab on...

LLNL, University of California partner for AI-driven additive manufacturing research

Sept. 27, 2023 - 
Grace Gu, a faculty member in mechanical engineering at UC Berkeley, has been selected as the inaugural recipient of the LLNL Early Career UC Faculty Initiative. The initiative is a joint endeavor between LLNL’s Strategic Deterrence Principal Directorate and UC national laboratories at the University of California Office of the President, seeking to foster long-term academic partnerships and...