Data Science in the News

Lab researchers win top award for machine learning-based approach to ICF experiments

Aug. 4, 2022- 
The IEEE Nuclear and Plasma Sciences Society (NPSS) announced an LLNL team as the winner of its 2022 Transactions on Plasma Science Best Paper Award for their work applying machine learning to inertial confinement fusion (ICF) experiments. In the paper, lead author Kelli Humbird and co-authors propose a novel technique for calibrating ICF experiments by combining machine learning with...

An open-source, data-science toolkit for energy: GridDS

Aug. 2, 2022- 
As the number of smart meters and the demand for energy is expected to increase by 50% by 2050, so will the amount of data those smart meters produce. While energy standards have enabled large-scale data collection and storage, maximizing this data to mitigate costs and consumer demand has been an ongoing focus of energy research. An LLNL team has developed GridDS—an open-source, data-science...

Defending U.S. critical infrastructure from nation-state cyberattacks

July 21, 2022- 
For many years, LLNL has been conducting research on cybersecurity, as well as defending its systems and networks from cyberattacks. The Lab has developed an array of capabilities to detect and defend against cyberintruders targeting IT networks and worked with government agencies and private-sector partners to share its cybersecurity knowledge to the wider cyberdefense community. LLNL has...

CASC team wins best paper at visualization symposium

May 25, 2022- 
A research team from LLNL’s Center for Applied Scientific Computing won Best Paper at the 15th IEEE Pacific Visualization Symposium (PacificVis), which was held virtually on April 11–14. Computer scientists Harsh Bhatia, Peer-Timo Bremer, and Peter Lindstrom collaborated with University of Utah colleagues Duong Hoang, Nate Morrical, and Valerio Pascucci on “AMM: Adaptive Multilinear Meshes.”...

Visualization software stands the test of time

Sept. 13, 2021- 
In the decades since LLNL’s founding, the technology used in pursuit of the Laboratory’s national security mission has changed over time. For example, studying scientific phenomena and predicting their behaviors require increasingly robust, high-resolution simulations. These crucial tasks compound the demands on high-performance computing hardware and software, which must continually be...

Brian Gallagher combines science with service

June 20, 2021- 
Brian Gallagher works on applications of machine learning for a variety of science and national security questions. He’s also a group leader, student mentor, and the new director of LLNL’s Data Science Challenge. The Lab has enabled Gallagher to combine scientific pursuits with leadership positions and people-focused responsibilities. “For a long time, my primary motivation was learning new...

Laser-driven ion acceleration with deep learning

May 25, 2021- 
While advances in machine learning over the past decade have made significant impacts in applications such as image classification, natural language processing and pattern recognition, scientific endeavors have only just begun to leverage this technology. This is most notable in processing large quantities of data from experiments. Research conducted at LLNL is the first to apply neural...

The data-driven future of extreme physics

May 19, 2021- 
By applying modern machine learning and data science methods to “extreme” plasma physics, researchers can gain insight into our universe and find clues about creating a limitless amount of energy. In a recent perspective published in Nature, LLNL scientists and international collaborators outline key challenges and future directions in using machine learning and other data-driven techniques...

Advanced Data Analytics for Proliferation Detection shares technical advances during two-day meeting

May 7, 2021- 
The Advanced Data Analytics for Proliferation Detection (ADAPD) program held a two-day virtual technical exchange meeting recently. The goal of the meeting was to highlight the science-based and data-driven analysis work conducted by ADAPD to advance the state-of-the-art to accelerate artificial intelligence (AI) innovation and develop AI-enabled systems to enhance the United States’...

LLNL physicist wins Young Former Student award

Dec. 16, 2020- 
Texas A&M University’s Department of Nuclear Engineering on December 10 announced it has honored LLNL physicist Kelli Humbird with its 2020-21 Young Former Student award for her work at LLNL in combining machine learning with inertial confinement fusion (ICF) research. Humbird graduated from Texas A&M with a PhD in nuclear engineering in 2019. Since joining the Laboratory as an intern in 2016...

DOE announces five new energy projects at LLNL

Nov. 13, 2020- 
The DOE today announced two rounds of awards for the High Performance Computing for Energy Innovation Program HPC4EI), including five projects at LLNL. HPC4EI connects industry with the computational resources and expertise of the DOE national laboratories to solve challenges in manufacturing, accelerate discovery and adoption of new materials and improve energy efficiency. The awards were...

From intern to mentor, Nisha Mulakken builds a career in bioinformatics

Nov. 3, 2020- 
The COVID-19 pandemic has sparked a wave of new research and development at the Lab, and Nisha Mulakken is very busy. The biostatistician has enhanced the Lawrence Livermore Microbial Detection Array (LLMDA) system with detection capability for all variants of SARS-CoV-2. The technology detects a broad range of organisms—viruses, bacteria, archaea, protozoa, and fungi—and has demonstrated...

Looking ahead to SC20

Oct. 27, 2020- 
Lawrence Livermore heads to the 32nd annual Supercomputing Conference (SC20) held virtually throughout November 9–19. Be sure to follow LLNL Computing (@Livermore_Comp) on Twitter with these hashtags: #LLNLatSC, #SC20, #MoreThanHPC. The Department of Energy (@NatLabsHPC) will also tweet during the event. Much of the content is pre-recorded and will remain available online for six months...

Harsh Bhatia uses scientific visualization to see the unseen

Oct. 6, 2020- 
Harsh Bhatia is a computer scientist at the Center for Applied Scientific Computing (CASC) where he has made a name for himself in data analysis, scientific visualization, and machine learning. His wide range of projects include applying topological techniques to understand the behavior of lithium ions, generating topological representations of aerodynamics data, and analyzing and visualizing...

The internship that launched a machine-learning target revolution

Oct. 1, 2020- 
Kelli Humbird came to LLNL as a student intern and became a teacher of new data science techniques. In this profile, she describes her experiences and the path that led to her research inertial confinement fusion. Read more at the National Ignition Facility.

Local Women in Data Science conference showcases Lab research

April 3, 2020- 
For the third consecutive year, LLNL hosted a Women in Data Science (WiDS) regional event on March 2. The event drew dozens of attendees from LLNL, Sandia National Laboratories, local universities, and Bay Area commercial companies. Livermore was one of over 200 regional events in 60 countries coordinated with the main WiDS conference at Stanford University. According to the WiDS website...

Deep learning may provide solution for efficient charging, driving of autonomous electric vehicles

Feb. 4, 2020- 
LLNL computer scientists and software engineers have developed a deep learning-based strategy to maximize electric vehicle (EV) ride-sharing services while reducing carbon emissions and the impact to the electrical grid, emphasizing autonomous EVs capable of offering 24-hour service. Read more at LLNL News.

Department of Energy researchers share data management strategies at first-ever “Data Day”

Nov. 11, 2019- 
It’s become something of a mantra of the digital age: Data is the new currency. Especially in science, where it’s hard to find a single project that doesn’t involve generating or consuming massive amounts of data. In light of the growing awareness of the critical importance of data management across the Department of Energy complex, more than 100 researchers from DOE national laboratories...

Successful simulation and visualization coupling proves the power of Sierra

Oct. 22, 2019- 
As the first National Nuclear Security Administration (NNSA) production supercomputer backed by GPU- (graphics processing unit) accelerated architecture, Sierra’s acquisition required a fundamental shift in how scientists at Lawrence Livermore National Laboratory (LLNL) program their codes to take advantage of the GPUs. The majority of Sierra’s computational power—95 percent of its 125...

Cindy Gonzales forges a new career in data science

Sept. 25, 2019- 
Through LLNL’s Data Science Immersion Program, Gonzales is now among the Lab’s newest data scientists. For two and a half years, she juggled a demanding workload—coordinating Computing’s Scholar Program, interning with data scientists, learning from mentors, supporting LLNL’s Data Science Institute, and attending college part time—while also having her first child. Read more at LLNL Computing...