Back

Physical and Life Sciences

LLNL signs MOU with Korean research institution to explore hydrogen and low-carbon technology

Leaders from Lawrence Livermore National Laboratory (LLNL) and the Korea Advanced Institute of Science and Technology (KAIST) recently signed a memorandum of understanding (MOU), as they seek to expand collaborations related to their shared research interests in hydrogen and other low-carbon energy technology. The two institutions have engaged in informal collaborations…

LLNL looks to revolutionize 3D printing through microwave technology

In the rapidly evolving world of 3D printing, the pursuit of faster, more efficient and versatile production methods is never-ending. Traditional 3D printing techniques, while groundbreaking, are often time-consuming and limited in the kinds of materials they can use as feedstock. But, through a new process a Lawrence Livermore National Laboratory (LLNL) team is calling…

All ears on the Big Ideas Lab podcast

Lawrence Livermore National Laboratory (LLNL) has big ideas and is showing the world in the Big Ideas Lab weekly podcast that takes listeners behind the fences and into its heart. “This is where big ideas come to life,” said Lab Director Kim Budil. “To do this, we bring together dynamic teams of many different disciplines — laser physicists and materials scientists and…

Tropical forests feel the burn of climate change

Tropical forests account for more than 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. New research by Lawrence Livermore National Laboratory (LLNL) scientists and colleagues from Colorado State University and the Smithsonian Tropical Research Institute found that warming and drying of tropical forest…

Deep Purple payload successfully deployed and operational

The Deep Purple telescope developed by Lawrence Livermore National Laboratory (LLNL) researchers is now operational in space. The Livermore instrument, which utilizes a new design for an ultra-violet (UV) and short-wave infrared monolithic telescope. features a novel, compact optical system and electronics package inside a lightweight, modular housing. On Friday, Aug. 16,…

Unveiling a novel sample configuration for ultrahigh pressure equation of state calibrations

In a paper published recently in the Journal of Applied Physics as an Editors Pick, an international team of scientists from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory and Deutsches Elektronen-Synchrotron have developed a new sample configuration that improves the reliability of equation of state measurements in a pressure regime not…

Experiment sets new record in search for dark matter

Figuring out the nature of dark matter, the invisible substance that makes up most of the mass in our universe, is one of the greatest puzzles in physics. New results from the world’s most sensitive dark matter detector, LUX-ZEPLIN (LZ), have narrowed down possibilities for one of the leading dark matter candidates: weakly interacting massive particles, or WIMPs. LZ, led…

LLNL researchers unleash machine learning in designing advanced lattice structures

Characterized by their intricate patterns and hierarchical designs, lattice structures hold immense potential for revolutionizing industries ranging from aerospace to biomedical engineering, due to their versatility and customizability. However, the complexity of these structures and the vast design space they encompass have posed significant hurdles for engineers and…

LLNL wins three 2024 technology commercialization grants

Lawrence Livermore National Laboratory (LLNL) researchers continue to capture key Department of Energy (DOE) Technology Commercialization Fund (TCF) grants with three new project grants announced in 2024. This year’s TCF program focuses on funding projects aimed at delivering clean energy solutions to the market — using new technology commercialized from DOE national labs…

Bridging science and language: Writer Shelby Conn earns a master’s in English

For many, going back to school—whether to pursue an undergraduate, graduate, or certificate program—may feel like an impossible feat. However, Lawrence Livermore National Laboratory (LLNL) makes this achievement more attainable through the Employee Tuition Assistance Program (ETAP). It wasn’t until getting hired at LLNL in 2021 and finding out about the ETAP that Shelby…

Meet LLNL interns: Exploring work culture and environment

Each year, Lawrence Livermore National Laboratory (LLNL) welcomes hundreds of interns across its various directorates. These interns receive practical experience in their fields of interest within a stimulating environment. As early career professionals in training, they collaborate with their mentors and participate in projects that develop their skills in their…

Two LLNL researchers named to Optica’s 2024 class of senior members

Lawrence Livermore National Laboratory (LLNL) researchers Paul Armstrong and Brent Stuart have been named senior members of Optica. The professional society’s senior membership status recognizes members with more than 10 years of professional experience in optics or an optics-related field. The 2024 class joins a distinguished group of scientists, engineers, entrepreneurs…

Greenland ice sheet melted in recent past

Greenland was once actually green — even if it was close to a million years ago. But its lack of an ice sheet back then may lead to clues about the increased risk of sea-level rise in a warmer future. A new study provides the first direct evidence that the center, not just the edges, of Greenland’s ice sheet melted away in the recent geological past and the now-ice-covered…

Unveiling the key factors that determine properties of porous polymer materials

Determining the relationship between microstructure features and their properties is crucial for improving material performance and advancing the design of next-generation structural and functional materials. However, this task is inherently challenging. To address the challenges, LLNL scientists developed an efficient and comprehensive computational framework to decipher…

Chemical production gets a cleaner boost

A new electrochemical method can make chemical production cleaner and more energy-efficient. Using thin film nickel anodes, a team of Lawrence Livermore National Laboratory (LLNL) scientists and collaborators have figured out how to clean up chemical production. When studying a new electrochemical reaction, using thin films is important because they give a consistent…

It’s getting hot in here: lasers deliver powerful shocking punch

Shock experiments are widely used to understand the mechanical and electronic properties of matter under extreme conditions, like planetary impacts by meteorites. However, after the shock occurs, a clear description of the post-shock thermal state and its impacts on material properties is still lacking. Lawrence Livermore National Laboratory (LLNL) scientists used ultra…

Molecules get a boost from metallic carbon nanotubes

A Lawrence Livermore National Laboratory (LLNL) team has found that pure metallic carbon nanotubes are best at transporting molecules. Molecule separations play an ever-increasing role in modern technology from water desalination to harvesting critical materials to high-value chemicals and pharmaceuticals manufacturing. To enhance water and proton transport, LLNL…

Chemical and transportation industries could get a boost with new catalyst coating

Coupling electrochemical conversion of the greenhouse gas CO2 with renewable electricity sources — such as solar and wind — promises green production of high-demand chemicals and transportation fuels. Carbon dioxide coupling products such as ethylene, ethanol and acetic acid are particularly useful as feedstocks for the chemical industry and powering vehicles. While…

Meet LLNL interns: Fitting in and standing out

Each year, Lawrence Livermore National Laboratory (LLNL) hosts hundreds of interns across the Laboratory’s directorates. These interns gain hands-on experience in professions they want to explore in an engaging environment. As aspiring early career professionals, interns have the opportunity to work with their mentors at the Lab and dive into projects that will help…

Probing carbon capture, atom-by-atom

A team of scientists at Lawrence Livermore National Laboratory (LLNL) has developed a machine-learning model to gain an atomic-level understanding of CO2 capture in amine-based sorbents. This innovative approach promises to enhance the efficiency of direct air capture (DAC) technologies, which are crucial for reducing the excessive amounts of CO2 already present in the…