Measuring attack vulnerability in AI/ML models

Aug. 26, 2024- 
LLNL is advancing the safety of AI/ML models in materials design, bioresilience, cyber security, stockpile surveillance, and many other areas. A key line of inquiry is model robustness, or how well it defends against adversarial attacks. A paper accepted to the renowned 2024 International Conference on Machine Learning explores this issue in detail. In “Adversarial Robustness Limits via...

International workshop focuses on AI for critical infrastructure

Aug. 12, 2024- 
On August 4, LLNL researchers Felipe Leno da Silva and Ruben Glatt hosted the AI for Critical Infrastructure workshop at the 33rd International Joint Conference on Artificial Intelligence (IJCAI) in Jeju, South Korea. Professors Wencong Su (University of Michigan – Dearborn) and Yi Wang (University of Hong Kong) joined them in organizing the workshop focused on exploring AI opportunities and...

Evaluating trust and safety of large language models

Aug. 8, 2024- 
Accepted to the 2024 International Conference on Machine Learning, two Livermore papers examined trustworthiness—how a model uses data and makes decisions—of large language models, or LLMs. In “TrustLLM: Trustworthiness in Large Language Models,” Bhavya Kailkhura and collaborators from universities and research organizations around the world developed a comprehensive trustworthiness...

Department of Energy announces FASST initiative

July 16, 2024- 
On July 16, the Department of Energy formally announced the proposed Frontiers in Artificial Intelligence for Science, Security and Technology (FASST) initiative via the web page www.energy.gov/fasst (with accompanying video and fact sheet). As stated on the web page, the speed and scale of the AI landscape are significant motivators for investing in strategic AI capabilities: “Without FASST...

AI, fusion, and national security with Brian Spears (VIDEO)

July 13, 2024- 
This episode of the Eye on AI podcast delves into the cutting-edge world of AI and high-performance computing with Brian Spears, director of LLNL's AI Innovation Incubator. The episode is presented here as a video with the following description: "Brian shares his experience in driving AI into national security science and managing the nation’s nuclear stockpile. With a PhD in mechanical...

Signal and image science community comes together for annual workshop

June 26, 2024- 
Nearly 150 members of the signal and image science community recently came together to discuss the latest advances in the field and connect with colleagues, friends, and potential collaborators at the 28th annual Center for Advanced Signal and Image Science (CASIS) workshop. The event featured more than 50 technical contributions across six workshop tracks and a parallel tutorials session...

FAA awards approval for drone swarm testing

May 29, 2024- 
LLNL’s Autonomous Sensors team has received the Federal Aviation Administration’s (FAA’s) first and—to date—only certificate of authorization allowing autonomous drone swarming exercises on the Lab main campus. These flights will test swarm controls and sensor payloads used in a variety of national security applications. Autonomous drone swarms differ from those used for entertainment...

Harnessing the power of AI for a safe and secure future (VIDEO)

May 13, 2024- 
LLNL, alongside the Department of Energy’s (DOE’s) 17 national labs, is harnessing the transformative potential of AI for a safer, more secure future. In 2022, LLNL made history by achieving fusion ignition, marking a pivotal moment for national security and clean energy. While AI continues to unlock new insights into fusion, through the combination of cutting-edge computer modeling...

For better CT images, new deep learning tool helps fill in the blanks

Nov. 17, 2023- 
At a hospital, an airport, or even an assembly line, computed tomography (CT) allows us to investigate the otherwise inaccessible interiors of objects without laying a finger on them. To perform CT, x-rays first shine through an object, interacting with the different materials and structures inside. Then, the x-rays emerge on the other side, casting a projection of their interactions onto a...

Lab partners with new Space Force Lab

Nov. 14, 2023- 
LLNL subject matter experts have been selected by the U.S. Space Force to help stand up its newest Tools, Applications, and Processing (TAP) laboratory dedicated to advancing military space domain awareness (SDA). The Livermore team attended the October 26 kickoff in Colorado Springs of the SDA TAP lab’s Project Apollo technology accelerator, designed with an open framework to support and...

High-performance computing, AI and cognitive simulation helped LLNL conquer fusion ignition

June 21, 2023- 
For hundreds of LLNL scientists on the design, experimental, and modeling and simulation teams behind inertial confinement fusion (ICF) experiments at the National Ignition Facility, the results of the now-famous Dec. 5, 2022, ignition shot didn’t come as a complete surprise. The “crystal ball” that gave them increased pre-shot confidence in a breakthrough involved a combination of detailed...

Patent applies machine learning to industrial control systems

May 8, 2023- 
An industrial control system (ICS) is an automated network of devices that make up a complex industrial process. For example, a large-scale electrical grid may contain thousands of instruments, sensors, and controls that transfer and distribute power, along with computing systems that capture data transmitted across these devices. Monitoring the ICS network for new device connections, device...

Computing codes, simulations helped make ignition possible

April 6, 2023- 
Harkening back to the genesis of LLNL’s inertial confinement fusion (ICF) program, codes have played an essential role in simulating the complex physical processes that take place in an ICF target and the facets of each experiment that must be nearly perfect. Many of these processes are too complicated, expensive, or even impossible to predict through experiments alone. With only a few...

Supercomputing’s critical role in the fusion ignition breakthrough

Dec. 21, 2022- 
On December 5th, the research team at LLNL's National Ignition Facility (NIF) achieved a historic win in energy science: for the first time ever, more energy was produced by an artificial fusion reaction than was consumed—3.15 megajoules produced versus 2.05 megajoules in laser energy to cause the reaction. High-performance computing was key to this breakthrough (called ignition), and HPCwire...

National Ignition Facility achieves fusion ignition

Dec. 13, 2022- 
The U.S. Department of Energy (DOE) and DOE’s National Nuclear Security Administration (NNSA) today announced the achievement of fusion ignition at LLNL—a major scientific breakthrough decades in the making that will pave the way for advancements in national defense and the future of clean power. On Dec. 5, a team at LLNL’s National Ignition Facility (NIF) conducted the first controlled...

Scientific discovery for stockpile stewardship

Sept. 27, 2022- 
Among the significant scientific discoveries that have helped ensure the reliability of the nation’s nuclear stockpile is the advancement of cognitive simulation. In cognitive simulation, researchers are developing AI/ML algorithms and software to retrain part of this model on the experimental data itself. The result is a model that “knows the best of both worlds,” says Brian Spears, a...

S&TR cover story: The ACES in our hand

Sept. 20, 2022- 
Uranium enrichment is central to providing fuel to nuclear reactors, even those intended only for power generation. With minor modifications, however, this process can be altered to yield highly enriched uranium for use in nuclear weapons. The world’s need for nuclear fuel coexists with an ever-present danger—that a nonnuclear weapons nation-state possessing enrichment technology could...

Lab researchers win top award for machine learning-based approach to ICF experiments

Aug. 4, 2022- 
The IEEE Nuclear and Plasma Sciences Society (NPSS) announced an LLNL team as the winner of its 2022 Transactions on Plasma Science Best Paper Award for their work applying machine learning to inertial confinement fusion (ICF) experiments. In the paper, lead author Kelli Humbird and co-authors propose a novel technique for calibrating ICF experiments by combining machine learning with...

Brian Gallagher combines science with service

June 20, 2021- 
Brian Gallagher works on applications of machine learning for a variety of science and national security questions. He’s also a group leader, student mentor, and the new director of LLNL’s Data Science Challenge. The Lab has enabled Gallagher to combine scientific pursuits with leadership positions and people-focused responsibilities. “For a long time, my primary motivation was learning new...

Advanced Data Analytics for Proliferation Detection shares technical advances during two-day meeting

May 7, 2021- 
The Advanced Data Analytics for Proliferation Detection (ADAPD) program held a two-day virtual technical exchange meeting recently. The goal of the meeting was to highlight the science-based and data-driven analysis work conducted by ADAPD to advance the state-of-the-art to accelerate artificial intelligence (AI) innovation and develop AI-enabled systems to enhance the United States’...