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ImPACTS: Improving Projections of AMOC and 
its Collapse Through advanced Simulations

The Atlantic Meridional Overturning Circulation (AMOC):

• An essential system of ocean currents in the Atlantic. Significantly 
contribute to global climate regulation. The variability of AMOC tied to 
numerous global scale impacts.

• Utilize ESMs to study climate phenomena that use complex 
mathematical models to simulate the numerous processes and 
interactions within Earth's system .

• AMOC results from a complex interplay between numerous processes, 
many are poorly understood or ill-represented in ESMs. Advancing our 
understanding and ability to simulate AMOC is required.

• Understand the weak AMOC simulated by E3SM and improve the 
representation. Leverage traditional oceanographic analyses in addition 
to advanced AI analysis.

SciDAC-5 BER/ASCR 2022-2027
PI: Luke Van Roekel, Los Alamos National Laboratory

Presenter Notes
Presentation Notes
The AMOC (Atlantic Meridional Overturning Circulation) is a critical component of the climate system, and the reliability of climate projections will depend on an accurate representation of the AMOC in ESMs (earth system models). 
ESMs lack a robust representation of the AMOC as its drivers are complex and poorly understood, while many of the critical processes are insufficiently represented.

Among the main deliverables of the proposed project is to dramatically accelerate the generation of equilibrated initial conditions and computational performance of the Energy Exascale Earth System Model (E3SM) at eddy-resolving resolutions. These developments will enable the proposed team to perform Grand Challenge simulations that can assess the AMOC’s stability at eddy-resolving resolution.

Combine modern oceanographic insights and ML: more efficiently explore the AMOC’s drivers and to diagnose and remedy the source of model bias.




ML/AI algorithms for AMOC

Three major efforts leveraging the cutting-edge Machine Learning/Artificial Intelligence (ML/AI) 
algorithms to analyze and understand AMOC processes beyond traditional oceanographic analyses.

Tackle data challenges including complexity, heterogeneity, sparsity, and variability.
• Unsupervised ML – tensor factorizations
• Representation learning – implicit neural networks

• Deep causal analysis – Granger causality and causal anomaly detection



Matrix and Tensor Factorizations

Matrix and Tensor Factorizations:  Decomposition of high-
dimensional data structures (tensors) into simpler constituent parts 
(vectors, matrices). 

Benefits: Capturing multi-way interactions to reveal hidden patterns 
and simplify complex data

Methods: 

• SVD/PCA - Most well known example for matrices
• Tucker Decomposition - Decomposition representing tensor 

as mode matrices multiplied by smaller mixing core tensor. 
• Others - Many other methods for compression/feature 

extraction: 
• Polyadic decomposition
• Tensor train
• Tensor networks

Diagram of the Tucker decomposition

Presenter Notes
Presentation Notes
Within ImPACTS, we use unsupervised machine learning to reduce the complexity of Earth system models.
The goal is to use these tools to study properties of AMOC, and diagnose differences between models.
 
Currently we are using tensor factorizations, generalizations of matrix factorizations to multi-way data, to perform this analysis.
Tensor factorizations, like matrix factorizations, decompose a data tensor into simple components, alongside their mixing. 
This allows us to capture multi way interactions in a lower dimensional latent space.
 
There are many different types of tensor factorizations.  
Tensor factorizations include matrix factorizations, such as the well known SVD/PCA
A type of generalization of SVD to multi-way data is known as the Tucker decomposition, pictured here on the right.
In the Tucker decomposition, the large tensor is broken down into a collection of mode matrices (one for each mode of the tensor) and a small mixing tensor.
The mode matrices describe the dominant patterns for each direction in the tensor, and the mixing tensor describes how they interact.
You can think of the modes matrices as analogs of eigenvectors
 
There are also many other types of tensor factorizations, each with its own advantages and purposes.  
For this talk, we will only focus on Tucker.




Tucker Application to AMOC

Latitude

Depth

Time
• The Atlantic Meridional Overturning 

Circulation (AMOC) is a key component 
of the global ocean conveyor belt, 
transporting warm surface waters 
northward and cooler deep waters 
southward

• The annually averaged overturning 
streamfunction in Atlantic Ocean is a 3-
way data tensor: (Depth) x (Latitude) x 
(Time)

• Data investigated is pre-industrial 
control simulations (CESM2)

The Tucker decomposition extracts interactions between depth, latitude and time

Presenter Notes
Presentation Notes
As mentioned, AMOC is an important component of the Earth system.
Model data for AMOC comes in the form of a tensor
The streamfunction is a zonally averaged, resulting in a (depth) by (latitude) by (time) tensor
As a proof of concept, we will use the Tucker decomposition on pre-industrial control simulations from CMIP6 archive
The goal is to understand the variability of the ensemble from a reduced dimensional perspective




PCA vs Tucker

PCA - First spatial and temporal 
modes

Tucker - First depth/latitude and 
temporal mode

Tucker can extract additional 
information - e.g. depth mode strength

By combining depth and latitude modes, Tucker decomposition 
recovers dominant modes of spatial variability (PCA):

Presenter Notes
Presentation Notes
Using tucker, what one discovers are modes for depth, latitude, and time
Here I have plotted the top three modes for depth and latitude for a run of the CESM2 model.  
The top time modes have not been plotted for parsimony
 
For example, the depth modes show the direction and magnitude of dominant flow across depths.
Using the mixing tensor, the depth modes and latitude modes can be combined to recover the spatial mode.
On the right, we have plotted the top spatial mode from Tucker vs PCA, alongside their associated temporal modes
We see that qualitatively it has recovered this mode.
The key takeaway is that Tucker has the ability to reproduce PCA while simultaneously separating the depth and latitude modes.
These modes are consistent across the CESM2 ensemble 



Model Comparison via Tensor 
Factorization

CESM2

GFDL-CM4

Pick two models Discover modes Compare Modes

• Procrustes Analysis: Compare similarity 
of latent spaces by rotating, translating, 
and scaling one to another

• Canonical Correlation Analysis: Measure 
similarity by finding linear combination 
of modes that are maximally correlated

• Distributional Comparison: Compare 
distribution of latent features extracted

Comparing modes gives insights into the 
differences in the variability of AMOC 
between models

Presenter Notes
Presentation Notes
This type of analysis allows us to compare different Earth system models from the perspective of their latent space.
For example, given two different CMIP6 models, we can extract their modes
Using various metrics, we are then able to gain a sense of the variability across the models (relative to the internal variability).
At this stage we have many results, and are working on how to best interpret them. 




Representation Learning

• Medical MRI data: MRI scans inherently provide sparse spatial measurements due to the acquisition
process.

• Environmental air quality data: climate data collected from various sources may have uneven coverage,
resulting in sparse data points.

• Material crystallography data: sparse data sets can arise in X-ray crystallography experiments, where
diffraction measurements are made at discrete points on a crystal.

Presenter Notes
Presentation Notes
Sparse data, limited number of sensors, moving sensors
Reconstruct a full picture of the physics of the problems.



Challenge

❖ Local
❖ Discrete
❖ Limited

❖ Global
❖ Continuous
❖ Infinite

Field reconstruction of complex physical time-evolving field from sparse measurements has been a 
longstanding challenge.

Presenter Notes
Presentation Notes
Bridge the field gap between left and right. 
Left is what we have, the right is the goal

The data has the bridge.



MMGN Model

We propose Multiplicative and Modulated Gabor Network 
(MMGN)
• Encoder: auto-decoding
• Decoder: Gabor filter + multiplicative neural network

Our model is able to handle a variety of uncertainties: 
• Uncertainty in the number of sensors (possibly 

malfunctioning) 
• Uncertainty in the position of sensors due to unknown 

external forces, like those encountered in oceanic conditions 

Four scenarios of sparsity:

Presenter Notes
Presentation Notes
Motivation: spatial temporal data recovery. Encoder: In the future for prediction. Known points (measurements) are fluctuating, dynamic. Existing works don’t work. Decoder: we are dealing physical data; physical field is continuous in space. We need to recover the continuous field rather than discrete representation. 
Two main components: encoder, decoder
Input of encoder: position of sensors; latent representation of a specific snapshot.
Left side: 2-D domain with 5 round points (training), square points (unknown). Stack the 5 temperature data. This dimension can be very high, so encoder is to reduce the dimension to a more manageable size. For each sensor, we have location. Combine coordinates. 



Qualitative Results

Visualizations of true and reconstructed fields. The first column displays the ground truth, the first row showcases 
predictions from different models, and the second row presents corresponding error maps relative to the 
reference data. In the error maps, darker pixels indicate lower error levels.



Quantitative Results 

MSE (mean squared error) is recorded. A smaller MSE denotes superior performance. For clarity, we highlight the 
best result in bold and underline the second-best. We have also included the promotion metric, which indicates 
the reduction in relative error compared to the second-best model for each task.

Presenter Notes
Presentation Notes
We propose a novel model that is able to learn continuous representation of highly complex and non-linear climate patterns using limited sensor measurements.
Empirical validation demonstrates that the proposed model achieves an average relative error reduction of 39.19% compared to other state-of-the-art deep learning models.




Deep Causal Analysis

• Complex interactions between potential AMOC drivers that occur over a wide range of spatio-temporal scales

• Identify and understand direct and indirect causal pathways for improving the simulation of AMOC in E3SM.

• Scalable and non-linear causal analysis is required. 

Picture credit: Runge, J., Bathiany, S., Bollt, E. et al. Inferring causation from time series in Earth system sciences. Nat Commun 10, 2553 (2019).

Presenter Notes
Presentation Notes
We only look at one variable at a time. Now to simulate AMOC, there could be hundreds of related variables.
understanding AMOC drivers and their relationships (e.g., surface buoyancy and wind forcing, eddy effects, overflows, etc.) 
The option to compare instead of the classic model evaluation to causal model evaluation.




Deep Causal Analysis

• Granger causality (GC): looking at the causation based on the effects of predictability. 

• Our solutions: deep learning based Granger causal inference frameworks capable of exploring the underlying 
causal graph (variable associating graph) of multivariate time series data.

TCCL: A Time Series Classification with 
Nonlinear Granger Causality Learning.

DAVAC: Detection and Diagnosis of Anomaly 
with Variable Association.

TCCL: 1) outperforms existing classification methods on imbalanced time series learning on full flight data; 2) 
learns the nonlinear Granger causal graph of each class, without any predefined kernel; and 3) interpret the 
difference between time series classes with the change of Granger causal graphs.

DAVAC: 1) learns the variable association in normal time series; 2) detect any anomaly in inference mode; and 3) 
discover how association changes in the detected anomaly.

Presenter Notes
Presentation Notes

We have developed various causal inference algorithms, e.g., classical Granger causal inference with Bayesian prior, a deep causal inference framework capable of exploring the underlying causal graph (variable associating graph) of multivariate time series data. 
A Time Series Classification with Nonlinear Granger Causality Learning, or TCCL. 



Conclusion

Demonstrate three major techniques to tackle data complexity, uncertainty, and variability for data intensive 
computing.

Tensor Factorizations

Representation Learning using Implicit 
Neural Networks

Granger Causal Analysis
And Anomaly Detection

Wei Xu
Brookhaven NL
xuw@bnl.gov
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