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The Traditional vs. Emerging Paradigms of Scientific Discovery

 The current paradigm
for discovery is inefficient,
time-consuming, labor
intensive, and costly

e The level of specialization required to explore
a large hypothesis space limits researchers

.'
A i

e Data sets are clustered, sparse, less-
interpretable, and incomplete

* Reproducibility crisis


Presenter Notes
Presentation Notes
The current paradigm for discovery and here I focus on benchtop science is to design, then make, and then test for a target property. 
It’s inefficient, time-consuming, labor intensive and costly.

The level of methodological specialization for synthesis and characterization limits researchers’ ability to explore all possible �materials for satisfying an application-specific functionality.

Data sets are clustered, sparse and incomplete. (i.e., tradition of not reporting data from “failed” experiments)

The picture shows an Argonne scientist in 1959 doing research using 3D glasses, 3D TV and remote control to manipulate robotics arms
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Autonomous Discovery @Argonne

* The vision

— A system that starts with a high-level description
of a hypothesis and autonomously carries out
computational and experimental workflows to
confirm or reject that hypothesis

— Use of Al in robotics and simulations to
close the loop on planning, execution, and
analysis of experiments

= Builds on

— Al approaches to planning (multiple steps), and
integration of results, causality, etc.

— Machine learning/simulation to design and
predict exp properties and outcomes

— Automation of experimental protocols
(robotic steps and workflows)

— Active Learning or RL for selection of next
experimental targets, etc.

https://github.com/anl-sdl/

https://www.cs.uchicago.edu/~rorymb/



Presenter Notes
Presentation Notes
Accelerate the discovery process by increasing the pace of experiments performed by seamless integration of siloed communities (material, chemistry, biology, medicine), data and infrastructure to achieve an efficient design, build and test ecosystem. 

A smart factory with advances in automation and AI will allow the required extensive, time-consuming human labor for synthesis, configuring and managing experiments, to proceed without direct human engagement which will elevate the human creativity towards higher-level goals of design of theoretical and experimental studies.

Democratize materials synthesis and characterization, enabling a broader community of non-experts, disadvantaged institutions to participate in the discovery process. (e.g., mirror the rapid explosion of activity in additive manufacturing with the proliferation of 3D printing — the “maker movement”)

Unbiased data collection and evaluation


https://github.com/anl-sdl/
https://www.cs.uchicago.edu/%7Erorymb/
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How biological data management is rapidly evolving?
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Design of antimicrobial peptides

An antimicrobial peptide (AMP) is a short
(typically 12 to 50 amino acid) molecule that
can target and kill viruses, bacteria, fungi,
and other pathogens

Challenge: Design an AMP that can kill specified
bacterial strains without harming host cells

With 20 possible amino acids, there are 20%° = 1026 AMPs
of length 20

A rational design approach might combine knowledge of bacterial cell
membrane composition and structure, AMP molecular and structural
properties, host cell membrane characteristics and intracellular
pathways—knowledge that may be gained by database/literature search,
simulation, experiment
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their modes of action, Trends in Biotechnology, 20 (9): 464-472




Automated synthesis and screening platform for

antl micro b ! al pe ptld €S d €si gn Throughput: 7 strains x 96 peptides/ day + (16-24 hours)
Throughput’ ~96 Plate Hudson robotic arm set Plate
. . incubator  Up for liquid handling reader
peptides/day = M ——
G Peptide screening across ~30

Hope College E. coli strains +
NIH/CDC ESKAPE collection

(BIO)

a

Al models learn successful features from current experiments
- and constrain generation of AMPs every cycle :

Encoder =1 r— Decoder

Simulations capturie-behaviors-of-successful
(and unsuccessful) experiments and derive
features for constraining Al models

A
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Large-language models for X
g Simulations + simulation

AMP generation (ALCF)
Throughput: O(1000s) per hour surrogates (ALCF) Throughput: O(10s) per day
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Embodied Agent for Automated Lab Code Generation
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Reasoning: Based en the infermation provided, it seems like the next logical step
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How biological data management is rapidly evolving?
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Genome-scale Language Models (GenSLMs)
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e Scaling LLMs with 25B parameters:
Transformer layers I—k « O (LY cornplexity in the attention
+ attention computation

e overcome communication overheads,

parameters, checkpointing
e Variation within SARS-CoV-2 sequences can be
I | | | | | | | small (< 1% overall variation)

¢ Need foundation model to accommodate

Input sequence | I ) ( I | )| I I ) ] diversity )
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trained on raw nucleotide sequences



Presenter Notes
Presentation Notes
Our genome scale language models follow a typical language model architecture where the sequence gets fed into an embedding layer that is followed by numerous transformer and attention layers. One of the main challenges is presented by these attention layers as their complexity grows quadratically with the length of the sequence. This has traditionally been a challenge for LLMs to capture context beyond a certain sequence length.  

From the transformer layers we can extract a semantic embedding or decode our latent representation back to the codon language. 

We provide various sizes and configurations of these models from 25million trainable parameters to 25biliion trainable parameters and have open sourced them for the scientific community. 



These models were trained on 110m diverse gene sequences in order to overcome the challenges presented by the large conserved regions of the SARS-COV2 genomes and resulted in one of the largest models trained on raw genome nucleotide sequences to date. 

-----------------------------
How do we use transformers in scientific workflows Talk about the complexity of the transformers especially in relationship to science 





INnfrastructure of GenSLM Foundation Models

LI ]
w fransrormers
ouild BN license | Apache-2.0

import torch LD
import numpy as np
from torch.utils.data import Dataloader

from genslm import GenSLM, SequenceDataset

model = GenSLM('genslm_25M_patric", model_cache_dir="/content/gdrive/MyDrive")
o [ J model.eval()
# Input data is a list of gene sequences
=0 eepspee
"ATGAAAGTAACCGTTGTTGGAGCAGGTGCAGTTGGTGCAAGTTGCGCAGAATATATTGCA" ,
ATTAAAGATTTCGCATCTGAAGTTGTTTTGTTAGACATTAAAGAAGGTTATGCCGAAGGT" ,

dataset = SequenceDataset(sequences, model.seq_length, model.tokenizer)
dataloader = DatalLoader(dataset)

# Compute averaged-embeddings for each input sequence
embeddings = []
with torch.no_grad():
for batch in dataloader:
outputs = model{batch["input_ids"], batch["attention_mask"], output_hidden_states=True)
# outputs.hidden_states shape: (layers, batch_size, sequence_length, hidden_size)
emb = outputs.hidden_states[@].detach().cpu().numpy()
# Compute average over sequence length
emb = np.mean(emb, axis=1)
embeddings.append(emb)

# Concatenate embeddings into an array of shape (num_sequences, hidden_size)

embeddings = np.concatenate(embeddings) 12
embeddings.shape

=»> (2, 512)


Presenter Notes
Presentation Notes
Before we can talk more about performance it is worth noting a couple of things about our infrastructure. 
Our main targets for this system were Polaris at ALCF, Selene at Nvidia, and Perlmutter at NERSC.  Polaris and Perlmutter nodes are composed of 4 40gb A100 gpus whereas selene Nodes have 8 80gb a100 gpus. 

Our software infrastructure is built  on the hugging face library with a pytorch lightning backend utilizing deepspeed ZerO 3 optimizations. 

This allowed us for rapid development and testing of different model architectures as well as quick deployment to new systems. We were able to deploy the code to Selene in a matter of hours using the standard development environment provided by nvidia in order to get performance scaling measurements. Performance was measured using the deepspeed profiler and correlated with Nvidia Nsys. 



.reveal new biological
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Presenter Notes
Presentation Notes
Now that we have trained models, we need to evaluate if they can capture biologically relevant information. 

To do this, we embedded a subset of the validation dataset and painted each point (genome?) with relevant biological information to look for clustering and gradients that suggest semantic meaning in the latent space. Shown here we see clear clustering based on the genomes sequence length as well as GC content (which is an indicator of the relative stability of the RNA) indicating the model has found a rich representation for the sequences. 

PAUSE 

To further evaluate the biological meaning econded in the model we examined a specific enzyme called malate dehydrogenase which has two unique isoforms. The model placed the isoforms in unique clusters that highlights structural differences (of which it has not been trained on) and preserves meaning acrost other relevant metrics. (work on timing here) 
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Reduced time to solution
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Sequence Length in Codons
GenSLM 123M GenSLM 1.3B
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Training steps 5,000 3,000 4,500 3,000
Training samples 165,000 396,000 49,500 132,000
Time to train (h) 4.1 2.4 15.6 10.4
Validation accuracy 0.9615 0.9625 0.9622 0.9947
Validation perplexity 1.031 1.029 1.031 1.025
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Presenter Notes
Presentation Notes
Using a 4-node Cerebras cluster, we trained from scratch until convergence GenSLM 123M and 1.3B over the full genomic sequence. 
Training both models up to a validation accuracy greater than 96% took less than half a day with 4 CS-2s
To train in 4-nodes GenSLM 123M and 1.3B required 6.6 and 18.0 algorithmic EFLOPs respectively.

And evaluating the models latent space, we see similar trends in that it is able to enconde relevant biological information and the same ability to cluster genome sequences by variants. 


On performance runs, we were able to show near linear scaling to a cluster size of 16 CS2’s across three model sizes from 250million parameters to 25 billion paramters. 





Desighing enzymes by incorporating experimental
feedback (aka ChatGPT for protein design)
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* Need general framework that enables
generative design of proteins by
incorporating experimental feedback

e Genome-scale language models (GenSLMs)!
provide a means to incorporate generative
modeling for gene sequences:

e complementary to protein language
models

e Rewards for the model:

 intrinsic — sequence specific (e.g., GC
content for environmental adaptation)

e extrinsic — functional annotation/ enzyme
activity measured via experimentation

M. Zvyagin, et al, Genome-scale language models map the evolutionary
16¢rajectories of SARS-CoV-2 (SC’22 Gordon Bell Prize)



Multi-objective RL for generative design allows greater
sequence diversity across MDH sequences

Range 17: 9 to 244 GenPept Graphics
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89.4 bits(220)
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We can generate new sequences with varying degrees of sequence

¥ Next Match A Previous Match

4 First Match

Expect Method Identities Positives Gaps

5e-14 Compositional matrix adjust. 72/247(29%) 115/247(46%) 12/247(4%)

VAVTGAAGQIGYSLLFRIASGSMFGPDQPVVLHLIEIEPALPALQGVVMELEDCAFPLLK
+ + GA G IG ++ +S MG + L+ I P + GV E++ CAFP +
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identity + positive matches
We can also generate minimal sequences that have functional 17
domains and can function as a productive enzyme
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Why existing supercomputers may not be prepared
for self-driving laboratory workflows?

100+

751

50 1

251

O,

_25_

_50_

_75,

—100+

70

—-100 =75 =50 =25 0 25 50 75 100
Z;

Exploring even top 1% (1,000 variants x 20 simulation windows = 2,000 simulations) from the embedding space

T
[}
=}

GC content - Generated Sequences (plddt = 0.8)

T
w
=}

GC cCEJntent - Natural Sequences

~
o

o
o

T
w
o

301

PMF (kJ/mol)
= N N
(O] C? (92

=
o

-04  -0.2 0.0 0.2 0.4
Reaction Coordinates (A)

using simulations can overcome the limits on nodes (for a single iteration of RL-based finetuning)

Labeling productive designs and ranking = large compute requirements across multiple computing sites/ facilities

18

N I ul ul
o o o (03]
GC content

w
S,



Outline

How biological data management is rapidly evolving?

e @l E
Scientific literature Databases, Knowledge Simulations High throughput/
base/ontologies, data stores } automated labs/ facilities
4

@3 - <HER> -
L] ]

Foundation Vector
Models Databases



We can simulate even beamlines @ APS
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Summary and some take aways...

* HPC workflows are evolving to include experimental data in new and novel ways:
— direct feedback to existing data (augmentation)

— collection of new data to drive additional experiments

" Infrastructure support for such workflows need new thinking:
— Al-based representation for access and relationship discovery across heterogenous datasets

— rethinking of data fabric: experimental data, simulations, and theory within the same infrastructure

" Foundation models:
— for empirical data, foundation models may be ideal (e.g., biology)
— for grounded data (physics, chemistry), multimodal foundation models with theoretical underpinnings

are necessary

= Automation and robotics:
— key progress drivers; need “operating systems” that support effective integration across standards,

vendors, and operators o





Presenter Notes
Presentation Notes
This work could not be done without the contributions of many people from many organizations including Nvidia, cerebras, our collaborators at Argonne, University of Chicago, Northwestern, and University of Illinois Chicago, and special thank you to the visualization team, and data storage team for enabling us to share this work with you all today.  
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Presenter Notes
Presentation Notes
Lastly we would like to acknowledge our funding sources as well as leadership computing facilities for compute and our colleagues for their assistance at all steps of this journey. At this time we would like to field any questions or comments. Thank you. 
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https://github.com/ramanathanlab/genslm
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