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The Traditional vs. Emerging Paradigms of Scientific Discovery

• The current paradigm 
for discovery is inefficient, 
time-consuming, labor 
intensive, and costly

• The level of specialization required to explore 
a large hypothesis space limits researchers

• Data sets are clustered, sparse, less-
interpretable, and incomplete

• Reproducibility crisis

HUMAN INTELLIGENCE 
DESIGNED AND EXECUTED EXPERIMENTS

ARTIFICIAL INTELLIGENCE 
GUIDED, ROBOTICALLY EXECUTED EXPERIMENTS

Presenter Notes
Presentation Notes
The current paradigm for discovery and here I focus on benchtop science is to design, then make, and then test for a target property. It’s inefficient, time-consuming, labor intensive and costly.The level of methodological specialization for synthesis and characterization limits researchers’ ability to explore all possible �materials for satisfying an application-specific functionality.Data sets are clustered, sparse and incomplete. (i.e., tradition of not reporting data from “failed” experiments)The picture shows an Argonne scientist in 1959 doing research using 3D glasses, 3D TV and remote control to manipulate robotics arms



The Traditional vs. Emerging Paradigms of Scientific Discovery

• Accelerate the 
discovery process 

• Elevate human creativity 
to higher level goals

• Democratize biological/materials 
synthesis and characterization

• Unbiased data collection 
and evaluation

Presenter Notes
Presentation Notes
The current paradigm for discovery and here I focus on benchtop science is to design, then make, and then test for a target property. It’s inefficient, time-consuming, labor intensive and costly.The level of methodological specialization for synthesis and characterization limits researchers’ ability to explore all possible �materials for satisfying an application-specific functionality.Data sets are clustered, sparse and incomplete. (i.e., tradition of not reporting data from “failed” experiments)The picture shows an Argonne scientist in 1959 doing research using 3D glasses, 3D TV and remote control to manipulate robotics arms



Autonomous Discovery @Argonne
 The vision

– A system that starts with a high-level description 
of a hypothesis and autonomously carries out 
computational and experimental workflows to 
confirm or reject that hypothesis

– Use of AI in robotics and simulations to 
close the loop on planning, execution, and 
analysis of experiments

 Builds on 
– AI approaches to planning (multiple steps), and 

integration of results, causality, etc.
– Machine learning/simulation to design and 

predict exp properties and outcomes
– Automation of experimental protocols 

(robotic steps and workflows)
– Active Learning or RL for selection of next 

experimental targets, etc.

https://github.com/anl-sdl/
https://www.cs.uchicago.edu/~rorymb/  

Presenter Notes
Presentation Notes
Accelerate the discovery process by increasing the pace of experiments performed by seamless integration of siloed communities (material, chemistry, biology, medicine), data and infrastructure to achieve an efficient design, build and test ecosystem. A smart factory with advances in automation and AI will allow the required extensive, time-consuming human labor for synthesis, configuring and managing experiments, to proceed without direct human engagement which will elevate the human creativity towards higher-level goals of design of theoretical and experimental studies.Democratize materials synthesis and characterization, enabling a broader community of non-experts, disadvantaged institutions to participate in the discovery process. (e.g., mirror the rapid explosion of activity in additive manufacturing with the proliferation of 3D printing — the “maker movement”)Unbiased data collection and evaluation

https://github.com/anl-sdl/
https://www.cs.uchicago.edu/%7Erorymb/


Outline
How biological data management is rapidly evolving?

Scientific literature Databases, Knowledge 
base/ontologies, data stores

Simulations High throughput/ 
automated labs/ facilities

Methods

• step 1

• step 2

• step k



Design of antimicrobial peptides
An antimicrobial peptide (AMP) is a short 
(typically 12 to 50 amino acid) molecule that 
can target and kill  viruses,  bacteria, fungi, 
and other pathogens

Challenge: Design an AMP that can kill specified 
bacterial strains without harming host cells

With 20 possible amino acids, there are 2020 = 1026 AMPs 
of length 20

A rational design approach might combine knowledge of bacterial cell 
membrane composition and structure, AMP molecular and structural 
properties, host cell membrane characteristics and intracellular 
pathways—knowledge that may be gained by database/literature search, 
simulation, experiment

L. T. Nguyen, E.F. Haney, H.J Vogel, The expanding scope of antimicrobial structures and 
their modes of action, Trends in Biotechnology, 20 (9): 464-472



Automated synthesis and screening platform for 
antimicrobial peptides design

Peptide synthesis (PSE)

Large-language models for 
AMP generation (ALCF) Simulations + simulation 

surrogates (ALCF)

Peptide screening across ~30 
Hope College E. coli strains + 
NIH/CDC ESKAPE collection 
(BIO)

Plate 
incubator

Hudson robotic arm set 
up for liquid handling

Plate 
reader

Simulations capture behaviors of successful 
(and unsuccessful) experiments and derive 
features for constraining AI models

AI models learn successful features from current experiments 
and constrain generation of AMPs every cycle 

1

2

1A

3Throughput: ~96 
peptides/day

Throughput: 7 strains x 96 peptides/ day + (16-24 hours)

Throughput: O(1000s) per hour Throughput: O(10s) per day



Growth assay application

List of datasets, one per 
experiment, on data portal. 

Application, without data 
analysis and publication steps. 

Results from experiment in which 
tetracycline solution at varying 
concentrations was added to E. 
coli. Y-axis = blank-adjusted 
optical density at 590nm at start 
of experiment (T0) and 12 hours 
after start (T12). Results show 
mean plus error bars from four 
identical runs. 

1. Can we translate lab protocols into a list of lab sub-tasks?
2. Given list of sub-tasks, can we solve each task and recall them as 

skills?



Embodied Agent for Automated Lab Code Generation

Code 
Action

Execution 
Error Refine Code

Add Code 
Skill

Verify Code

Candidate Code
Memory of Tasks

Task Decomp.

Task Prompt Retrieve

Goal 
Tracking

Skills

Memory

Agent



Outline
How biological data management is rapidly evolving?

Scientific literature Databases, Knowledge 
base/ontologies, data stores

Simulations High throughput/ 
automated labs/ facilities

Foundation 
Models

Vector 
Databases



Genome-scale Language Models (GenSLMs)

ACC  AAC  CAA  CTT   TCG  ATC   TCT   TGT  AGA  

Input sequence
X[N] \{i}

…

L1

Lk

Semantic embedding

0.4   0.1   0.003 … …  0.8 …  0.1  

z

Transformer layers 
+ attention

p(Xi | X[N]\{i})

TCG CGA CGT … … ACG … CTT
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Model Seq. length #Parameters Dataset

GenSLM-
Foundation

2048 25M, 250M, 2.5B, 
25B

110M

GenSLM 10240 25M, 250M, 2.5B, 
25B

1.5M

GenSLM-
Diffusion

10240 2.5B 1.5M

• Scaling LLMs with 25B parameters:
• O (L2) complexity in the attention 

computation
• overcome communication overheads, 

parameters, checkpointing
• Variation within SARS-CoV-2 sequences can be 

small (< 1% overall variation)
• Need foundation model to accommodate 

diversity
• One of the largest foundation model 

trained on raw nucleotide sequences

11

Presenter Notes
Presentation Notes
Our genome scale language models follow a typical language model architecture where the sequence gets fed into an embedding layer that is followed by numerous transformer and attention layers. One of the main challenges is presented by these attention layers as their complexity grows quadratically with the length of the sequence. This has traditionally been a challenge for LLMs to capture context beyond a certain sequence length.  From the transformer layers we can extract a semantic embedding or decode our latent representation back to the codon language. We provide various sizes and configurations of these models from 25million trainable parameters to 25biliion trainable parameters and have open sourced them for the scientific community. These models were trained on 110m diverse gene sequences in order to overcome the challenges presented by the large conserved regions of the SARS-COV2 genomes and resulted in one of the largest models trained on raw genome nucleotide sequences to date. -----------------------------How do we use transformers in scientific workflows Talk about the complexity of the transformers especially in relationship to science 



Infrastructure of GenSLM Foundation Models

12

Presenter Notes
Presentation Notes
Before we can talk more about performance it is worth noting a couple of things about our infrastructure. Our main targets for this system were Polaris at ALCF, Selene at Nvidia, and Perlmutter at NERSC.  Polaris and Perlmutter nodes are composed of 4 40gb A100 gpus whereas selene Nodes have 8 80gb a100 gpus. Our software infrastructure is built  on the hugging face library with a pytorch lightning backend utilizing deepspeed ZerO 3 optimizations. This allowed us for rapid development and testing of different model architectures as well as quick deployment to new systems. We were able to deploy the code to Selene in a matter of hours using the standard development environment provided by nvidia in order to get performance scaling measurements. Performance was measured using the deepspeed profiler and correlated with Nvidia Nsys. 
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GenSLM Foundation models reveal new biological 
insights on gene-level organization

Presenter Notes
Presentation Notes
Now that we have trained models, we need to evaluate if they can capture biologically relevant information. To do this, we embedded a subset of the validation dataset and painted each point (genome?) with relevant biological information to look for clustering and gradients that suggest semantic meaning in the latent space. Shown here we see clear clustering based on the genomes sequence length as well as GC content (which is an indicator of the relative stability of the RNA) indicating the model has found a rich representation for the sequences. PAUSE To further evaluate the biological meaning econded in the model we examined a specific enzyme called malate dehydrogenase which has two unique isoforms. The model placed the isoforms in unique clusters that highlights structural differences (of which it has not been trained on) and preserves meaning acrost other relevant metrics. (work on timing here) 



GenSLMs also reveal function level organization of 
genes



Reduced time to solution

15

Fast time-to-solution: Train from scratch with MSL 
10,240 in less than half a day with 4 CS-2s

GenSLM 123M GenSLM 1.3B
1 CS-2 4 CS-2 1 CS-2 4CS-2

Training steps 5,000 3,000 4,500 3,000

Training samples 165,000 396,000 49,500 132,000

Time to train (h) 4.1 2.4 15.6 10.4

Validation accuracy 0.9615 0.9625 0.9622 0.9947

Validation perplexity 1.031 1.029 1.031 1.025
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2.5B

25B

(1x)

(15.9x)

(1x)

(15.9x)

(1x)

(15.5x)

Embeddings produced by GenSLM 1.3B, 
MSL 10,240

Presenter Notes
Presentation Notes
Using a 4-node Cerebras cluster, we trained from scratch until convergence GenSLM 123M and 1.3B over the full genomic sequence. Training both models up to a validation accuracy greater than 96% took less than half a day with 4 CS-2sTo train in 4-nodes GenSLM 123M and 1.3B required 6.6 and 18.0 algorithmic EFLOPs respectively.And evaluating the models latent space, we see similar trends in that it is able to enconde relevant biological information and the same ability to cluster genome sequences by variants. On performance runs, we were able to show near linear scaling to a cluster size of 16 CS2’s across three model sizes from 250million parameters to 25 billion paramters. 



Designing enzymes by incorporating experimental 
feedback (aka ChatGPT for protein design)

• Need general framework that enables 
generative design of proteins by 
incorporating experimental feedback 

• Genome-scale language models (GenSLMs)1 
provide a means to incorporate generative 
modeling for gene sequences:
• complementary to protein language 

models 
• Rewards for the model:

• intrinsic – sequence specific (e.g., GC 
content for environmental adaptation)

• extrinsic – functional annotation/ enzyme 
activity measured via experimentation

M. Zvyagin, et al, Genome-scale language models map the evolutionary 
trajectories of SARS-CoV-2 (SC’22 Gordon Bell Prize) 16



Multi-objective RL for generative design allows greater 
sequence diversity across MDH sequences

• We can generate new sequences with varying degrees of sequence 
identity + positive matches

• We can also generate minimal sequences that have functional 
domains and can function as a productive enzyme

17



Why existing supercomputers may not be prepared 
for self-driving laboratory workflows? 

18

• Exploring even top 1% (1,000 variants x 20 simulation windows = 2,000 simulations) from the embedding space 
using simulations can overcome the limits on nodes (for a single iteration of RL-based finetuning) 

• Labeling productive designs and ranking  large compute requirements across multiple computing sites/ facilities 



Outline
How biological data management is rapidly evolving?

Scientific literature Databases, Knowledge 
base/ontologies, data stores

Simulations High throughput/ 
automated labs/ facilities

Foundation 
Models

Vector 
Databases



We can simulate even beamlines @ APS

20



Summary and some take aways… 
 HPC workflows are evolving to include experimental data in new and novel ways:

– direct feedback to existing data (augmentation)
– collection of new data to drive additional experiments 

 Infrastructure support for such workflows need new thinking:
– AI-based representation for access and relationship discovery across heterogenous datasets 
– rethinking of data fabric: experimental data, simulations, and theory within the same infrastructure

 Foundation models:
– for empirical data, foundation models may be ideal (e.g., biology)
– for grounded data (physics, chemistry), multimodal foundation models with theoretical underpinnings 

are necessary 

 Automation and robotics: 
– key progress drivers; need “operating systems” that support effective integration across standards, 

vendors, and operators 21
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