
Goals
In lossless compression, entropy provides theoretical limit on compressibility (associated with coding) of data 

-> no equivalent for lossy compressors

1. Characterize statistics of the data that impact lossy compression, e.g. correlation structures of scientific 
datasets, patterns, range of values, …

2. Explore their relationships, through functional regression models, to compression ratios 

-> These models form the first step towards evaluating theoretical limits of lossy compressibility
> how far are existing compressors to optimality 
> help optimize compressors 
> allow maximum efficiency for storing scientific datasets
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Presenter Notes
Presentation Notes
In this work, we focus on correlations in datasets and their link to compression ratios for several compressors. The goal of the research paper is to explore:�1) statistical methods to characterize the correlation structures of the data and�2) their relationships, through functional models, to compression ratios.
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Procedure and quantities of interest
● Performed statistical and compression analysis on several datasets  (analysis of 2D slices as a start)

> Synthetic 2D-Gaussian samples with controllable correlation structured 
> Scientific datasets: Miranda, SCALE-LETKF available on SDRBench [1]

● Lossy compressors: SZ [2], ZFP [3], MGARD [4], BitGrooming, Digit Rounding
> compression ratios (impacted by error bound, compressor used, and structures within data)

• Statistics of interest: independent of the compressors
> correlation strength across grid-points
> variance: value range, variability
> quantized entropy: entropy                                          of quantized data

Spline regression model  to 
predict compression ratio
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