

Exceptional service in the national interest

Managing Randomness to Enable Reproducible Machine Learning

Hana Ahmed, Jay Lofstead

June 3, 2022

About Me

- 1. Senior @ Scripps College
- 2. Math+Computer Science major, Writing minor
- Year-Round Intern @ Sandia National Labs
 w/ Dr. Jay Lofstead

Reproducibility in science and ML

Reproducibility.

"obtaining consistent results using the same input data, computational steps, methods, and code, and conditions of analysis" (National Information Standards Organization)

Why this is important for ML:

Ensuring that models can be regenerated

Understanding the variance in accuracy caused by randomness

Randomness in ML

Examples:

- Shuffling training data
- Randomized subsets of input features
- Random initial weights

Pseudo-random number generators (PRNGs): Algorithms that generate sequences of pseudo-random values.

Approach

- 3 ML algorithms: Neural network, K-means, Naïve Bayes
- 6 datasets: Heart Disease, Wine, Iris, Breast Tissue, Wisconsin Breast Cancer (WBC), Somerville Happiness
- 4 variables: Random seed, Train/test ratio, Train data set, Test data set
- **PRNG**: mt19937 (Mersenne Twister)

Experiment 1

Seed: Varied

Train/test ratio: Fixed

Train data: Varied

Test data: Varied

- NN: 44.53% difference on Heart Disease, 45.17% difference on Wine.
- K-Means: 8.88% difference on Iris, 28.62% difference on Breast Tissue.
- Naïve Bayes: 5.64% difference on WBC, 17.3% difference on Somerville Happiness.

Experiment 2

Seed: Varied

Train/test ratio: Fixed

Train data: Varied

Test data: Fixed

- NN: 33.23% difference on Heart Disease, 0% difference on Wine.
- K-Means: 22.22% difference on Iris, 26.31% difference on Breast Tissue.
- Naïve Bayes: 0% difference on WBC, 0% difference on Somerville Happiness.

Experiment 3

Seed: Fixed

Train/test ratio: Varied

Train data set: Varied

Test data set: Fixed

Model performance varied widely for each algorithm on all data sets despite controlling the seed.

Train/Test	Heart Disease	Wine (NN)	Iris	Breast Tissue	Wisconsin Breast Cancer	Somerville Happiness
	(NN)		(K-Means)	(K-Means)	(Naive Bayes)	(Naive Bayes)
10/90	0.4873	0	0.6296	0.2737	0.6455	0.5703
20/80	0.4873	0	0.5833	0.3095	0.6279	0.5701
30/70	0.7476	0.3296	0.523	0.4324	0.6155	0.56
40/60	0.4873	0.3296	0.5556	0.4127	0.5776	0.5294
50/50	0.4873	0.3296	0.6667	0.0566	0.5673	0.5211
60/40	0.5663	0.3296	0.8333	0.3571	0.5878	0.5263
70/30	0.5205	0.3296	1.0	0.4688	0.5789	0.5
80/20	0.8372	0.3296	1.0	0.3810	0.5971	0.4286
90/10	0.4873	0.3296	0	0.5455	0.7101	0.5

Conclusions

- Random number seeds significantly impact the quality of ML models.
- Current work: understanding the potential variance range for ML algorithms for any given data set

• Future work:

- Experimenting with different types of ML algorithms and data sets.
- Applying same techniques to parallel ML algorithms
- Running identical experiments using a GPU

