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APPFL: ARGONNE PRIVACY-PRESERVING
FEDERATED LEARNING

Open-source PPFL framework

= Motivations
— Distributed data from multiple
institutions (e.g., Argonne,
UChicago, etc.)
— Avoid data transfer to a server
— Potentially sensitive/private data

= Science applications
— Biomedical data
— Smart meters deployed in grid .
— Experimental facilities (e.g., APS X- EaE_uus
ray beamlines)
— National security (e.g., critical

APPFL: Argonne Privacy-Preserving Federated
Learning

federated learning environment with

e customized algorithms
e privacy techniques.

# » APPFL: Argonne Privacy-Preserving Federated Learning © Edit on GitHub
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FEDERATED LEARNING

» Machine learning without centralizing training data
— No direct data sharing or storing

= More benefits .
— Learning a global/shared model eags (R) Moy ssers updatos re aqaroueted (3t form
consensus change (C) to the shared model, after which the
s . . . rocedure is repeated. (image from Google
— Utilizing a localized model at each client side i peetec (Image fom 5eod)
. . Cross-silo FL
— Personalization
, . N "y 2
= Two settings: ' e
. . Federated ?erver :;r Me:f::“c’: :::: 0"":
— Cross-device FL (1000s and 1Ms of small devices) : = - — g §F
— Cross-silo FL (a few large data repositories) : Vo e &
NS LS A i@. . II'::‘::
Federated learning on decentralized medical datasets (image
from NVIDIA)
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PRIVACY-PRESERVING TECHNIQUES

u Some tGChniqueS in FL ............. . Randomized

: ' Function
— Homomorphic encryption: limited to ! Dataset ! :
D, : , : q

Probability Density
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certain operations
— Secure multi-party computation:  CIirooroiIr } Differing in " omme
computationally expensive
— Differential privacy: potential accuracy
loss . mImTmTTTTL
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» Differential Privacy
— The two outcomes are indistinguishable
for all D1 and D2 which differ in one
individual’s data.
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OVERVIEW: APPFL FRAMEWORK
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Server broadcasts global model parameters
Step 2
Each client computes local model parameters
Step 3 (—) '
Each client sends local model parameters (randomized)
Step 4

Server updates global model parameters
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MAJOR COMPONENTS OF APPFL

» Training algorithms:
— IIADMM, FedAvg [McMahan et al., 2017], ICEADMM [Zhou and Li, 2021]
— Any user-defined FL algorithms can be added.

» Differential privacy:
— Random perturbation with Laplacian noises [Dwork et al., 2006]
— More advanced schemes can be added.

= Communication protocols:
— gRPC: communication between multiple platforms and languages
— MPI: efficient communication in a cluster environment

» User-defined model and data:
— Inherits PyTorch’s neural network module, torch.nn.Module
— Dataset class that inherits the PyTorch’s Dataset
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ADVANCED PPFL ALGORITHMS

Implementation of novel training algorithms
= (state-of-the-art) OutP: Inexact ADMM (IADMM) + output perturbation

= (APPFL) ObjP: IADMM + objective perturbation
= (APPFL) ObjPM: IADMM + objective perturbation + multiple local updates

Stronger privacy Weaker privacy
Weaker learning Stronger learning
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USE CASE
Chest X-ray classification for COVID-19 cases

» FL can produce more accurate model, compared to the
models trained on local datasets.

= DP is applied to protect chest X-ray data from reverse-
engineering the model gradients communicated during
training.

» Collaborations with UChicago Medical School and Broad
Institute

Weaker Privacy Stronger Privacy

APPFL server Privacy Preservation
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Better Classification

—— Local Model 1 (AUC = 0.75)
— Local Model 2 (AUC = 0.82)
1 Federated Model (AUC = 0.91)
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USE CASE

Federated load forecasting for electric distribution system
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CONCLUDING REMARKS

= APPFL: open-source Python package with support of
any Pytorch models
— The package has been released (v0.2.0).

. Any User'deﬁned ML mOdeI can be trained on Fig 1. Network architecture in smart grid (modified

» Customized PPFL algorithms can be easily
implemented.

= Applications: national security, smart grid (Fig. 1),
biomedicine, experiments (Fig. 2), etc.

= Collaborations and contributions are welcome!

10




REFERENCES

» Minseok Ryu and Kibaek Kim. “Differentially Private Federated Learning via
Inexact ADMM with Multiple Local Updates” arXiv preprint arXiv:2202.094009,
2022.

» Minseok Ryu, Youngdae Kim, Kibaek Kim, and Ravi Madduri. “APPFL: Open-
Source Software Framework for Privacy-Preserving Federated Learning” arXiv
preprint arXiv:2202.03672. (accepted to IPDPS 2022), 2022

» Minseok Ryu and Kibaek Kim. “A Privacy-Preserving Distributed Control of
Optimal Power Flow” IEEE Transactions on Power Systems 37(3), 2022

= https://github.com/APPFL

11 Argonne &

AAAAAAAAAAAAAAAAAA


https://github.com/APPFL
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