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APPFL: ARGONNE PRIVACY-PRESERVING 
FEDERATED LEARNING

§ Motivations
– Distributed data from multiple 

institutions (e.g., Argonne, 
UChicago, etc.)

– Avoid data transfer to a server
– Potentially sensitive/private data

§ Science applications
– Biomedical data
– Smart meters deployed in grid
– Experimental facilities (e.g., APS X-

ray beamlines)
– National security (e.g., critical 

infrastructure)

Open-source PPFL framework
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FEDERATED LEARNING
§ Machine learning without centralizing training data

– No direct data sharing or storing

§ More benefits
– Learning a global/shared model
– Utilizing a localized model at each client side
– Personalization

§ Two settings:
– Cross-device FL (1000s and 1Ms of small devices)
– Cross-silo FL (a few large data repositories)
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Your phone personalizes the model locally, based on your 
usage (A). Many users' updates are aggregated (B) to form a 
consensus change (C) to the shared model, after which the 
procedure is repeated. (image from Google)

Federated learning on decentralized medical datasets (image 
from NVIDIA)

Cross-device FL

Cross-silo FL



PRIVACY-PRESERVING TECHNIQUES

§ Some techniques in FL
– Homomorphic encryption: limited to 

certain operations
– Secure multi-party computation: 

computationally expensive
– Differential privacy: potential accuracy 

loss

§ Differential Privacy
– The two outcomes are indistinguishable 

for all D1 and D2 which differ in one 
individual’s data.

4

Differential Privacy

 X
[6] https://www.youtube.com/watch?v=lg-VhHlztqo

The outcome of any analysis is essentially equally likely, independent of whether 
any individual joins, or refrains from joining, the dataset [6].

Fundamental Idea
Randomized 
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OVERVIEW: APPFL FRAMEWORK
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(randomized)



MAJOR COMPONENTS OF APPFL
§ Training algorithms:

– IIADMM, FedAvg [McMahan et al., 2017], ICEADMM [Zhou and Li, 2021]
– Any user-defined FL algorithms can be added.

§ Differential privacy: 
– Random perturbation with Laplacian noises [Dwork et al., 2006]
– More advanced schemes can be added.

§ Communication protocols:
– gRPC: communication between multiple platforms and languages
– MPI: efficient communication in a cluster environment

§ User-defined model and data:
– Inherits PyTorch’s neural network module, torch.nn.Module
– Dataset class that inherits the PyTorch’s Dataset
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ADVANCED PPFL ALGORITHMS

§ (state-of-the-art) OutP: Inexact ADMM (IADMM) + output perturbation
§ (APPFL) ObjP: IADMM + objective perturbation
§ (APPFL) ObjPM: IADMM + objective perturbation + multiple local updates

Implementation of novel training algorithms
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USE CASE

§ FL can produce more accurate model, compared to the 
models trained on local datasets.

§ DP is applied to protect chest X-ray data from reverse-
engineering the model gradients communicated during 
training.

§ Collaborations with UChicago Medical School and Broad 
Institute

Chest X-ray classification for COVID-19 cases
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USE CASE
Federated load forecasting for electric distribution system

…

Household 1

Household 1

Household N

Parameters 
with differential privacy

• Electricity consumption at household level
• Distributed data at a large number of devices
• Privacy concern



CONCLUDING REMARKS
§ APPFL: open-source Python package with support of 

any Pytorch models
– The package has been released (v0.2.0).

§ Any user-defined ML model can be trained on 
decentralized data while ensuring data privacy.

§ Customized PPFL algorithms can be easily 
implemented. 

§ Applications: national security, smart grid (Fig. 1), 
biomedicine, experiments (Fig. 2), etc.

§ Collaborations and contributions are welcome!
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Fig 1. Network architecture in smart grid (modified 
from https://doi.org/10.1016/j.comnet.2012.12.017)

Fig 2. Multiple experimental devices at APS
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