DOE DATA DAYS 2022

APPFL: OPEN-SOURCE FRAMEWORK FOR PRIVACY-PRESERVING FEDERATED LEARNING

KIBAEK KIM

Computational Mathematician Mathematics and Computer Science Argonne National Laboratory

MINSEOK RYU YOUNGDAE KIM

Postdoctoral Appointees Mathematics and Computer Science Argonne National Laboratory

RAVI MADDURI

Computer Scientist Data Science Learning Argonne National Laboratory

June 2, 2022

APPFL: ARGONNE PRIVACY-PRESERVING FEDERATED LEARNING

Open-source PPFL framework

- Motivations
 - Distributed data from multiple institutions (e.g., Argonne, UChicago, etc.)
 - Avoid data transfer to a server
 - Potentially sensitive/private data
- Science applications
 - Biomedical data
 - Smart meters deployed in grid
 - Experimental facilities (e.g., APS Xray beamlines)
 - National security (e.g., critical infrastructure)

# APPFL latest	* » APPFL: Argonne Privacy-Preserving Federated Learning	O Edit on Gith
earch docs		
ETTING STARTED	APPFL: Argonne Privacy-Preserving Fee Learning	lerated
stallation		
torials		
ow to run PPFL		
ser-defined model		
ser-defined dataset		
ow to set configuration		
ading and saving models		
gging and recording FL results		
EVELOPERS GUIDE	APPFL is a privacy-preserving federated learning framework that allows use federated learning environment with	rs to implement a
ow to contribute		
ow to add new algorithms	 user-defined neural network models (based on torch.nn.Module) 	
ow to test code	 customized algorithms 	
ocumentation	privacy techniques.	
lease Guide	The framework is designed to run on a single machine (a laptop or a cluster)	as well as multiple
	neterogeneous machines.	

FEDERATED LEARNING

- Machine learning without centralizing training data
 - No direct data sharing or storing
- More benefits
 - Learning a global/shared model
 - Utilizing a localized model at each client side
 - Personalization
- Two settings:
 - Cross-device FL (1000s and 1Ms of small devices)
 - Cross-silo FL (a few large data repositories)

Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is repeated. (image from Google)

Cross-silo FL

Federated learning on decentralized medical datasets (image from NVIDIA)

PRIVACY-PRESERVING TECHNIQUES

Differential Privacy

Some techniques in FL

- Homomorphic encryption: limited to certain operations
- Secure multi-party computation: computationally expensive
- Differential privacy: potential accuracy loss

Differential Privacy

 The two outcomes are indistinguishable for all D1 and D2 which differ in one individual's data.

OVERVIEW: APPFL FRAMEWORK

MAJOR COMPONENTS OF APPFL

Training algorithms:

- IIADMM, FedAvg [McMahan et al., 2017], ICEADMM [Zhou and Li, 2021]
- Any user-defined FL algorithms can be added.

Differential privacy:

- Random perturbation with Laplacian noises [Dwork et al., 2006]
- More advanced schemes can be added.

Communication protocols:

- gRPC: communication between multiple platforms and languages
- MPI: efficient communication in a cluster environment
- User-defined model and data:
 - Inherits PyTorch's neural network module, torch.nn.Module
 - Dataset class that inherits the PyTorch's Dataset

ADVANCED PPFL ALGORITHMS Implementation of novel training algorithms

- (state-of-the-art) OutP: Inexact ADMM (IADMM) + output perturbation
- (APPFL) ObjP: IADMM + objective perturbation
- (APPFL) ObjPM: IADMM + objective perturbation + multiple local updates

USE CASE

Chest X-ray classification for COVID-19 cases

- FL can produce more accurate model, compared to the models trained on local datasets.
- DP is applied to protect chest X-ray data from reverseengineering the model gradients communicated during training.
- Collaborations with UChicago Medical School and Broad Institute

Weaker Privacy

Stronger Privacy

USE CASE

Federated load forecasting for electric distribution system

CONCLUDING REMARKS

- APPFL: open-source Python package with support of any Pytorch models
 - The package has been released (v0.2.0).
- Any user-defined ML model can be trained on decentralized data while ensuring data privacy.
- Customized PPFL algorithms can be easily implemented.
- Applications: national security, smart grid (Fig. 1), biomedicine, experiments (Fig. 2), etc.
- Collaborations and contributions are welcome!

Fig 1. Network architecture in smart grid (modified from https://doi.org/10.1016/j.comnet.2012.12.017)

Fig 2. Multiple experimental devices at APS

REFERENCES

- Minseok Ryu and Kibaek Kim. "Differentially Private Federated Learning via Inexact ADMM with Multiple Local Updates" arXiv preprint arXiv:2202.09409, 2022.
- Minseok Ryu, Youngdae Kim, Kibaek Kim, and Ravi Madduri. "APPFL: Open-Source Software Framework for Privacy-Preserving Federated Learning" arXiv preprint arXiv:2202.03672. (accepted to IPDPS 2022), 2022
- Minseok Ryu and Kibaek Kim. "A Privacy-Preserving Distributed Control of Optimal Power Flow" IEEE Transactions on Power Systems 37(3), 2022
- https://github.com/APPFL

ACKNOWLEDGEMENT

Funding supports and Contributions

- DOE-ASCR PALISADE-X Project
- DOE Early Career Research Program (on data-driven optimization)
- Minseok Ryu (ANL)
- Youngdae Kim (former postdoc at ANL)
- Ravi Madduri (ANL)
- Jordan Fuhrman (UChicago)
- Nick Dodd (ASU)

THANK YOU

www.anl.gov