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2018 ACM Turing Award for Deep Learning

|

Hinton’s Turing Lecture:
“So I think a lot of the credit
for deep learning really goes
to the people who collected
the big databases like Fei Fei
Li and the people who made
the computers go fast like
David Patterson and others.”
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Other problems where data + machines win?

Cost per Raw Megabase of DNA Sequence

Moore's Law

National Human Genome
Research Institute

genome govisequencingcosts

01 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Big Data

Machines

Scalable
Algorithms



Presenter Notes
Presentation Notes
In addition to what science problem  (and who  cares), what  data do you have/need, what algorithms, and what  computing,  Quantify
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Presenter Notes
Presentation Notes
The proposal, "Microbial metabolic dependency and its impacts on the soil carbon cycle", doesn't focus on any special locale, but rather the detailed dynamics of microbial activity in some general soil sample, using the stable isotope probing (SIP) technique.  I grabbed a nice panel of microbial images off of Buckley's website: https://blogs.cornell.edu/buckley/

These are some of the metagenome projects from the JGI Community Science Program (CSP) that we are supporting with MetaHipMer.  They look at microbial community composition and dynamics in, e.g. mixed-conifer zones following prescribed fire, seasonal and diurnal fluctuations in mangroves, and redox activity in wet tropical soils.  These projects produce at least 1 TB of data, in one case up to 8 TB.  They are far larger and more complex in composition than traditional metagenome datasets, a few benchmark datasets of which are shown in the table.
Show size in TB, numbers of reads, complexity (unique kmers or 21-randommer uniqueness)
Coassembly better than multiassembly
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Presenter Notes
Presentation Notes
The proposal, "Microbial metabolic dependency and its impacts on the soil carbon cycle", doesn't focus on any special locale, but rather the detailed dynamics of microbial activity in some general soil sample, using the stable isotope probing (SIP) technique.  I grabbed a nice panel of microbial images off of Buckley's website: https://blogs.cornell.edu/buckley/

These are some of the metagenome projects from the JGI Community Science Program (CSP) that we are supporting with MetaHipMer.  They look at microbial community composition and dynamics in, e.g. mixed-conifer zones following prescribed fire, seasonal and diurnal fluctuations in mangroves, and redox activity in wet tropical soils.  These projects produce at least 1 TB of data, in one case up to 8 TB.  They are far larger and more complex in composition than traditional metagenome datasets, a few benchmark datasets of which are shown in the table.
Show size in TB, numbers of reads, complexity (unique kmers or 21-randommer uniqueness)
Coassembly better than multiassembly
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l owing the invisible life of the ocean
2009-2013 expeditions
35000 samples from all oceans
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The Human Microbiome

What is known? What is unknown?

100 TB of data!

Undetected unknowns

Hidden taxa & strain-level diversity
~20% sequences not matching
microbial genomes

Functional unknowns
~40%* genes without a match in
functional databases


Presenter Notes
Presentation Notes
The current knowns and unknowns in the human microbiome. Numbers of known and unknown members of the human gut microbiome taken from a population-wide and multi-bodysite large-scale metagenomic assembly study [2]. Numbers marked with asterisks refer to genes from the Integrated Gene Catalogue (IGC) of the human gut microbiome and are derived from human fecal samples and mapping to the eggNOG database [3]


More Data Yields Better Science

Improved contiguity in coassembly
108 mmfs 5 5 % a s s m s s EEEEEamaasssmmEEEshEEsssssssssssdssssssssssssagla .y I P
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Cumulative Length (bp)

10° T 1 | 1 T
100 101 102 103 104 105

Number of Contigs
800 GB of soil (Western Arctic, 12) data plus synthetic data from 64 reference genomes

Comparable to best
known assemblers
on small datasets
Unique science
results on large
ones, co-assembled
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GRE taxonomic abundance (phylum level)

bar labels = n phyla/ n MAGs

100%

75%

50%

Percent abundance

25%

Rare biosphere
candidate phylum
FCPU426 again!

8000

6000

= 4000

2000

Dataset size

More taxonomic diversity

= GB FASTQ
Verrucomicrobiota

Spirochaetota a= U n Iq ue to
Proteobacteria > 4| TB

Planctomycetota
Patescibacteria =
Myxococcota
Methylomirabilota
Gemmatimonadota ¢

Fibrobacterota Ra re
;
Tt biosphere!
Eisenbacteria

Dormibacterota <=
| Desulfobacterota_B
Desulfobacterota 4w

W Dependentiae <=
Cyanobacteria =

W Chioroflexota

W Chlamydiota <=

B Bdellovibrionota <=
Bacteroidota

B Actinobacteriota
B Acidobacteriota

Great Redox Experiment led by Jennifer Pett-Ridge at LLNL; with Robert Riley et al at JGI and ExaBiome



Presenter Notes
Presentation Notes
Not only do we assemble more MAGs in bigger assemblies, those MAGs represent more unique phyla
Some ten phyla are detected only in coassemblies > 1 TB
Those include, once again, the rare biosphere candidate phylum FCPU426


Ensuring High Quality Assemblies

Genome fraction (%) Strain recall ===« Common marine

GSA
GSA === Unique marine

SPAdes ABYSS

= =  Common strain madness

= = Unique strain madness

Ray

A-STAR

MEGAHIT OPERA-MS MEGAHIT OPERA-MS

“The best ranking method across metrics and all datasets was HipMer...." 1| <




10,240,000
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Assembly Rate on Science Data

Bytes Assembled per sec

Not just data size

Effective use of
HPC increased
assembly rate

Over 250x on ~equal
node counts!

- better algorithms
- less software

- use of GPUs




ExaBiome: Exascale Solutions for the Microbiome




MetaHipMer Assembly Pipeline (UPC++)

reads G S G G 1) K-mer Analysis
‘n, Iterate for k+s K-mer histogram
e T 8
k-mers

_-_-'—_-_— 2) Contig Generation
“®=\Walk k-mer graph

‘8’ Extract k+s-mers
I

contigs ]

— ~
3) Alignment
| & | 1 1
read-contie —_— —— —— _ \Allgn reads to contigs
alignments ! E— — | — — Vs
N R : : P 4) Local Assembly
extended u KExtend ends of contigs )
contigs . . N N s |

contig-contig
scaffolds

-

J

5) Scaffolding
Walk contig graph (iterate) , N



Presenter Notes
Presentation Notes
Meta: avoiding using terminology beyond “read”, “kmer”, and “contig”.



MetaHipMer Time Breakdown

arctic arcticsynth WAO WA
N=1 (0.9GB) N=8 (11GB) N=32 (71GB) N=256 (813GB)

Stage Timing, CPU

100% [0 shuffle

file 10 Weak-ish

0 scaff .
scalin
J

ctg gen

B merge

75%

50%

25%

0%

dataset
CPU time for alignment slower than “normal” due to SIMD Power9 issues g




Simulation Vs. Data Motifs

7 Dwarfs of Simulation 7 Giants of Big Data
Particle methods Generalized N-Body
Unstructured meshes Graph-theory
Dense Linear Algebra Linear algebra
Sparse Linear Algebra } Hashing

Spectral methods Sorting

Structured Meshes Alignment

Monte Carlo methods Basic Statistics

Phil Colella NRC Report + our paper [’
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Presenter Notes
Presentation Notes
Completely rethink hardware, sotwarre, algorithms, applkications (deep in each)
All the way up to the problem statement


Counting K-mers to Remove Errors

E CTA|CIGGAATAAAACCAGGAACAACAGACCCAGCAC

ATTAACAACAAAGGGTAAAAGGCATCATGGCTTCAG rea ds
GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCT
TAATGCGACGACGCACCTCGTTGTTACGCACTTCAG
® 0 O
v
GCT/i ACGG AACC
CTAC n CEs RS ACCA k-mers
AATA AAAA (e.g. k=4)

TACG AAAC CCAG

GGAA ATAA
00 C [9)



Presenter Notes
Presentation Notes
Necessary vocabulary 
Inputs are reads
k-mers are substrings of reads, parsed by sliding a window of length k over the reads, 1 base at a time


Distributed Hash Tables of K-Mers

Make hash table of k-mers
Keys are fixed-length strings:
AAC TGA CCG
ACC GAT CGT
ceroommo e Values depend on application:
||T o 7|=|7 |78 « A count to remove singletons
_¢'_ v v _‘l'_ %
Close to k-times memory blowup

» Use Bloom filter to reduce space
* Asynchronous insert with UPC++

09l |e f
I Aay |

1

(0]

[y J«—o]
salnus

o[
0
(0]

1-sided communication to insert / lookup B




K-mer counting: All the Wires All the Time

1000

500

100

Runtime (s)

10

Bulk-synchronous MPI vs Asynchronous 1-sided UPC++ (w/ and w/out Bloomf/

5 10 a0

Modes

Steve Hofmeyr, Rob Egan, Evangelos Gerganas, leads on MetaHipMer software

@ MPI with bloom filter

@ UPC++ with bloom

filter
UPC++ without

)

N

N

27)




K-mer Counting: Finding Data Parallelism

kmer counter M exchange (incl. MPI call) kmer counter M exchange (incl. MPI call)
W parse & process kmers B parse & process kmers
4000 64 nodes (2688 CPU cores) 40 64 notes (384 GPUs)
3000 -
O O
g 2000 5 20
£ 1000 w
o I 0

H. sapien 54x H. sapien 54x

* K-mer counter on Summit. (Note scales -- red k-mer exchange time is roughly equal.)
* Reduce CPU/GPU communication by parsing as well as processing on GPU

Over 100x speedup!! 4R\




K-mer Counting: Reducing Communication

Read: ACTES CTGCGAGTGA @ kmer based M supermer based (M=7) supermer based (M=9)
ACTGGACT
CTGGACTG 150
PRI . TGGACTGC Supermer:
Minimizer: ACTG COACTOOT A CTOCACTOCTGE
GACTGCTG -
ACTGCTGC o
TGCG s §
Minimizer: CTGC TG GA upermer : 3
G GA CTGCTGCGAGT by 50
60T Supermer:
Minimizer: AGTG{ TGCGA@FG ol
GCGAGTGA 5

C. elegans 40X H. sapien 54x

Reduce communication with “Supermers” _
e Multiple contiguous k-mer Speedup on 64 Summit nodes

e map to the same process ID with minimizer-based hashing e 6 GPUs/node
e Saves volume (bandwidth) and number of messages e baseline: 42 cores / node
(latency) /
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Presenter Notes
Presentation Notes
Completely rethink hardware, sotwarre, algorithms, applkications (deep in each)
All the way up to the problem statement


K-Mer Hash Tables Viewed as a Graph

Make hash table of k-mers
AAC  TGA  CCG Keys are fixed-length strings
ACC GAT CGT
CCT ATT GTC
| - Values
|i = —HHs - Remove branches
27|22 * Find connected component “contigs”

Graph walk with poor locality
* Asynchronous lookup with UPC++

%88 [«

(0]
[y J«—o]
salnus

o[
0
(0]

1-sided communication to insert / lookup B




Avoiding Communication in Graph Walk (DFS)

Next step in this assembler is a DFS on the k-mer graph (edges are k-1 overlaps)

Caching for temporal locality Layout for spatial locality: if we
(reuse): if few large items, so have an “oracle” that approximate
lookups will repeat final genome
om W EN mm EE E —-~~-\ P1 @
P ™ (occS
0 V@S T | is up to 2.8x faster!
= ———— raversal is up to 2.8x faster!
g~ : G Up to 76% reduction of off-
’ D node communication !

Georganas PhD and SC18 paper
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Presenter Notes
Presentation Notes
Completely rethink hardware, sotwarre, algorithms, applkications (deep in each)
All the way up to the problem statement


Smith-Waterman: Dynamic Programming

G| A
0|l 0]O
0O|l1]O0
0| 0] 2
0|l 0] O
OO 1:
O(O0]O
O(O0]O
O(O0]O

Scoring
GATCACCT insert/delete = -2

match = 1
GAT_ACCC

mismatch = -1.

Options to search matrix
e Full search (Smith-Waterman)
e Banded (only search near diagonal)

e X-Drop stop poor searches early

Many variations 4R\




ADEPT: Batch Alighment on GPUs

- GCUPS for Multiple GPUs vs 32 Haswell Cores. GCUPS for Multiple GPU vs 32 Haswell Cores
5 500 { EEE ADEPT(2-GPU) — — B ADEPT(2-GPU)
o [ ADEPT(4-GPU) — 350 - 1 ADEPT(4-GPU)
8 [ ADEPT(8-GPU) [0 ADEPT(8-GPU)
Nl [ SSW(32-Cores) [ SSWw(32-Cores)
Q Il SeqgAn(32-Cores) 300 - Il SegAn(32-Cores)
Q 400 A -
n —
L
© 250
a2
S o 3001 " [ ]
- a S 200
[} 3 9]
> 5 5
_% 200 - 150 -
o
1l 100
2]
% 100 +
O 50 4
7 1 i il m
0 - _ ‘ - 0- T T T
DNA-1 DNA-2 DNA-3 Protein-1 Protein-2 Protein-3

Adept is designed for relatively short, low-error sequences, both DNA (left) and proteins (right)
SSW and SegAn are vectorized implementations of Smith-Waterman Algorithm on CPU. 1 N\



https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Muaaz_G_-Awan
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Jack-Deslippe
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Aydin-Buluc
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Oguz-Selvitopi
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Steven-Hofmeyr
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Leonid-Oliker
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03720-1#auth-Katherine-Yelick

GPU Optimizations

Speedups from GPUs

M arctic, N=1,0.9G W arcticsynth, N=8, 11G wal0, N=32, 71G I wa, N=256, 813G

10.00 9:42
8.00
-]
% 6.00 5.80
> . 4.79
2 . 469
o 427 4.53
o 3.67
§ 4.00 3.15 3.22 3.1
(0]
73 213 2.26
2.00

0.00
k-mer analysis alignment local assembly overall

GPU

optimizations
are complex
(hash tables,
graphs, etc.)
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Presenter Notes
Presentation Notes
Completely rethink hardware, sotwarre, algorithms, applkications (deep in each)
All the way up to the problem statement


diBELLA: Towards a Long Read Assembler

Long reads (PacBio, etc.)

* Longer alignments

* More compute-intensive
°* More GPU friendly

Only align pairs of reads that
have a common k-mer

unique k-mers for each multiplicity (%)
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Bulk-Synchronous vs 1-sided Asynchronous

Strong Scaling Comparison with CCS Human Data on Cori KNL

180
160 W Communication
140 I Synchronization Asynchronous communication hides
Computation latency and uses less memory in general
— 120
Q100
= N
£ 80
3
" [
40 =
20 -
] —
0
52 S 52 52 s5g Heg g
25 43 83 83 23 83z 83
<C <C <C < < < <C
NodeCount 8 16 32 64 128 256 512
Core Count 512 1,024 2,048 409 = 8192 16,384 32,768 PR

~

- A
s
AB
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Set Alignment is a Sparse All-to-All

Run expensive alignment on all pairs with a common k-mer

RT R2 R3 R4 R5
R1 ° 3 K1 °
....................... bbb R @ .
R2 K| e : @ | b ]
R3| @ @ K3 .| ° R2 @ | @
R4 o K4 e
........................................................ R3 N o ' @
R5 K5 : :




Avoid Communication, Maximize Parallelism

Compute on all pairs of particles or strings, or...

Obvious solution
0090000000 000DO0O|VLVOO

16 particles on 8 processors Better solution
Pass all particles around (p steps) 000009009000 0000 VOO0

000000000000 0VOOO
000000000000 0VOOO

Decreases —
° #messagesbyfactorcz Q00009009000 Q00O VOO O
« #volume sent by factor ¢ ¢ = 4 copies of particles

8 particles on each [”/ )




Less Communication..

Cray XE6; n=24K particles, p=6K cores

Execution Time vs. Replication Factor

S 0.045 : , : , ,

2 004 | mm Communication (Reduce) 1

o - mm Communication (Shift)

£ 0035 | == Computation .

(O]

£ 003 w)
i- (]
= 0.025 2
902 96% reduction in —
g shift time (red) £
s 0.01 2
3 0.005

2

h 0

c=1 c=2 c=4 c=8 c=16  ¢=32
Replication Factor IR
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 = 78.38



1D vs 2D Algorithm on DNA “overlap”

103

Time (s)

104

Strong Scaling (C. elegans)

—=— diBELLA 1D
—=— diBELLA 2D

8 32 72 128
Nodes (32 MPI Rank/Node)

Strong Scaling (H. sapiens)

103

—=— diBELLA 1D
—=— diBELLA 2D
------ Linear

50

72 128 200 338
Nodes (32 MPI Rank/Node)

131199 SI JaMOT]




Seven Take-Aways

* Applications
— More data, more compute =2 more insights
— ~7 motifs of genomic analysis (analytics)
* Programming models
— Use of PGAS for irregular, fine-grained problems
— Can still map GPUs
* Algorithms
— Hide latency or aggregating messages (can trade off)
— Use memory to reduce data (volume)
— Use all the wires all the time




Local Assembly on Summit

CPU vs GPU
M Local Assembly (CPU) [ Local Assembly (GPU) A Speed Up ° Speedup Of 7X on 64
800 ° Summit nodes.
 Lower as expected as
machine scales (strong
scaling)

600

400

Time (sec)
Speed Up

200

64 128 256 512 1024

Nodes




Sequence Alignment

agctgatgcatgcagagggcgattcga
Reference v ¥ =

Dynamic Programming Sequence. ——+t -
 Low Arithmetic Intensity Query — :_-T_:-t = 1:_
Sequence — J
* Irregular memory access patterns ! agct tgagct
« Complex parallelism Q
* Integer only computations Referefice Seq >
o | N I
S|Pl [P
- i I
ADEPT Sequencing Library g id -
: €]
« Also working on code generator v

Dynamic Programming



Presenter Notes
Presentation Notes
What are the properties of sequence alignment kernels?
Why is it an important problem to study?


Dennard Scaling is Dead; Moore’s Law Will Follow

! ! | ! A

7 L B T S [
10 S i : it “ Transistors
| 0O clence | S 4,14 * | (thousands)
Y implication: Atlas L.
5 . P A Al .
105 F computing estimate ... Asafh e I§|nrci':]le-Thread
' : gt P eriormance
N offby$1B i lese¥eTT | (SpeciNT x 10%
: L AA Laffa *‘ Frequency (MHz
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1970 1980 1990 2000 2010 2020
Year
:'%ﬂ M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp 42
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Presenter Notes
Presentation Notes
Single-thread performance has stagnated --- need parallelism to hit peak flops.
Image reconstruction typically memory bandwidth bound:
Need parallelism to saturate memory bandwidth.
Must design code well to leverage memory hierarchy. 
Caches on multi/many-core systems
Coalescing on GPU systems.
Problem is getting worse---50-60% flop improvements, 23% bw---machines becoming more imbalanced.
Compute bound now ⇒ maybe not in future.

Takeaway: growing burden on software to deliver performance.


Exascale Architecture Plans (2008)
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Exascale Architecture Plans (2021)
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Systems

Accelerators

180
160
140
120

80
60
40
20

2006

2007 -

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019

Image: http:/#S¥deplayer.com/slide/7541288/

L4 Matrix-2000
L PEZY-SC

L4 Kepler/Phi

i AMD Vega

& Xeon Phi Main
M Intel Xeon Phi
id Clearspeed

i IBM Cell

d ATl Radeon

i Nvidia Volta
LI Nvidia Pascal
i Nvidia Kepler
kd Nvidia Fermi
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Presentation Notes
Xeon Phi Main – using Phi as main processor = not strictly a co-processor or accelerator



Specialization: End Game for Moore’s Law

A
Ops/Joule
>
General GPUs  Reconfigurable Special
Purpose Purpose

EEEEEEEEEEE






Data Movement is Expensive

Hierarchical energy costs.

6 pJ
P Cost to move data 1 mm on-chip
m Typical cost of a single floating point operation
m Cost to move data 20 mm on chip
2 Cost to move off-chip,
30 pJ but stay within the package (SMP)
2000 pJ C(?st to move data off chip
into DRAM
~2500 pJ Cost to move df':\ta off chip
to a neighboring node

Image: http://slideplayer.com/slide/7541288/


Presenter Notes
Presentation Notes
From: OpenSoC Fabric slides. Farzad Fatollahi-Fard


Communication Dominates: Dennard was too good

Hardware Speed Trends
I

° Fo netvlvork Iaténcy (OLI) | —‘I——gamma‘l
. _ ‘ —+— beta (DRAM) )
107~ ¢ T ——+— alpha (DRAM) El
++ i beta (Ethernet) | ]
L T g —+—— alpha (Ethernet) | - .
107 e +p(+ ) 3 Time =
F ] *
ol ] # flops * vy +
network bandwidth ()
£ . # message * o +
o “+— . memorylatency (2) - 1 # bytes comm * 8+
DRAM bandwidth (82) e — ]
10°% - T E
: # diff memory locs * a2 +
109 ¢ E
: flop (1) I # memory words * 32
10702 E

| | | |
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Data from Hennessy / Patterson, Graph from Demmel




Specialization, Yes Accelerators, No!

More

More data Narrow CPUs in CPUs

memory
spaces

parallelism data types control communicate




Put Accelerators in Charge of Communication

Architecture and software are not yet structured for accelerated-initiated communication (Summit with
NVLink between Power9 CPUs and NVIDIA GPUs)

10

software
overheads

——
%]
=
o 6
=1
)]
A
m
-l

N
A
s

N

BY
x-node, HBM2

CPU

lf-'-
= 1'}2'
2w
-
3 8 ;
5 £ 3w
EE & 10
c © o
& 4
£
= 107 4
1'}-1_

NV host-init NV dev-init
x-node HEM2 x-node HBM2
CPU GPU

A = Verbs (CPU+DRAM)
=== NWSHMEM Host-init.
MWSHMEM Dev_-init.

1K 10K 100K 1M

Message Size (B)

Taylor Groves et al




Hardware Trends

Specialization

More Parallelism

Costly Communication

Data Parallelism

GPUs | Wider SIMD

EEEEEEEEEEE

Cores

-53 -

Latency

BW

Bisection

Levels

SW Controlled



enomic Analysis at Scale

Cost per Raw Megabase of DNA Sequence

Moore's Law

National Human Genome
Research Institute

genome govisequencingcosts

01 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Big Data Big Scalable
Machines Algorithms

A
freeeee "'l
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Presenter Notes
Presentation Notes
In addition to what science problem  (and who  cares), what  data do you have/need, what algorithms, and what  computing,  Quantify


Strong Scaling on Summit

1500 B scaffolding
B local assembly
alignment
1000 B contig generation
® B k-mer analysis
: —
£
200

64 128 256 512 1024 nodes




Sparse Matrices
(unsupervised learning)



Presenter Notes
Presentation Notes
Completely rethink hardware, sotwarre, algorithms, applkications (deep in each)
All the way up to the problem statement


Protein Clustering with Sparse Matrices

Input: Adjacency matrix A (sparse) Image source: http://micans.org/mcl/

e Similarity Matrix: “Many-to-many” protein alignment

Q- Expansion: Square matrix, pruning small entries, dense columns

* Inflation: element-wise powers
PASTIS + HipMCL

Oguz Selvitopi; Md Taufique Hussain; Ariful Azad; Aydin Bulug




Sparse Matrix Algorithms

ey 100K "N Time spent in various stages of HipMCL
« > EZOK 200 b Local spgemm
v 180 | o Memory estimation | |
SUMMA Broadcast
B0 : r
X . Merging
100K B ool Pruning
g ol Other
é OO e et
g 0
A Y |: B0 ]
B A0
Distributed memory enabled new science 20| 12.400 ]
) HipMCL Optimized HipMCL Optimized HipMCL
12.4x faster with GPUs! (with overlap)

Oguz Selvitopi; Md Taufique Hussain; Ariful Azad; Aydin Bulug




Sparse and
Dense Matrices
(supervised learning)



Presenter Notes
Presentation Notes
Completely rethink hardware, sotwarre, algorithms, applkications (deep in each)
All the way up to the problem statement


Bottleneck in GNN Training
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ATH /-1 sparse-dense matmul (SpMM)
(ATH/-7) W/ dense-dense matmul (DGEMM)
SpMM is the bottleneck, not DGEMM!




Communication-Avoiding Matrix Multiply

i A ]

*y « 2D algorithm: never chop k
dim

»  3D: Assume + is associative;

) = chop k, which is - replication
y of C matrix
471
X
7

e
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

fori
for j

for k
Cl[i,j1 ... Ali,k] ... BI[k,j] ...




Avoiding Communication in GNNs

Protein

1D 1.5D

m sparse bcast
m dense bcast
mreduce

m compute

f\lﬂ Tripathy, Yelick, Buluc, Reducing Communication in Graph Neural Network Training, SC'20
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Machine Learning Mapping to Linear Algebra

Logistic
Regression,
Support Vector
Machines

Graphical Model Deep Learning
Structure Learning (Convolutional
(e.g., CONCORD) Neural Nets)

Dimensionality Clustering (e.g.,
Reduction (e.g., MCL, Spectral
NMF, CX/CUR, PCA) Clustering)

Sparse Matrix-
Sparse Vector
(SpMSpV)

N
A
s

BEI

i Dense
Sparse Matrix- S.parse 'V'at.”" Sparse - Sparse Dens.e Sparse - Dense .
Times Multiple . Matrix . Matrix
Dense Vector Matrix Product Matrix Product .
(SpMV) Dense Vectors (SPGEMM) Vector (SpDM) Matrix
2 (SpMM) - (BLAS2) (BLAS3)
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