Creating a platform for rapid computational antibody design via machine learning, HPC, and laboratory experimentation

LLNL Data Science Institute Workshop: AI in Healthcare
March 25, 2021

Thomas Desautels
Staff Scientist, LLNL

LLNL: Daniel Faissol, Adam Zemla, Ed Lau, Fangqiang Zhu, John Goforth, Denis Vashchenko, Mary Silva, Rebecca Haluska, Brent Segelke, Feliza Bourguet, Victoria Lao, Monica Borucki, Dina Weilhammer, Jacky Lo, Nicole Collette, Magdalena Franco

Sandia NL: Brooke Harmon, Oscar Negrete, Max Stefan
LLNL is developing a machine-learning-driven platform for rapid, rational, design of therapeutic antibodies and vaccine antigens

- Our platform is a novel autonomous, ML-driven system that performs in-silico biomolecular design at scale using HPC
- Active learning and Bayesian optimization approach harnesses predictions from molecular simulations and bioinformatic predictors together with high-value, directed experiments
 - > 1 million simulations performed w/ 3 million core hours on HPC to date
- Approach does not require starting from survivor serum sample isolation or library screening
- Demonstrated feasibility in pilot with a major pharma company by re-designing antigens for multiple antibody targets.
- Efforts currently focused on designing monoclonal antibodies against SARS-CoV-2
Viruses reproduce by entering and hijacking host cells
If we could stop viral entry, we could stop the viral cycle
Neutralizing antibodies can stop viral entry
Antibodies are human proteins that specifically and sensitively recognize pathogen targets

> m396 heavy chain
QVQLQQSGAEVKPGSSVKVSCKASGVTFS
SYTISVRQAPGQGLEWMGGITPILGIANY
AQKFQGRVTITTDSTAYMELESLRSEDTA
VYYCARLTVMMGMVDVGWQQGTTVTSSAS
TKGPSVFPLAPSSKSTSGTSALGCLVQKVFKP
EPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SVVTVPSSSLGTQTYICNVNHKSNTKVDKK
VEPKSCDKTSLFVHHHHHDYKD
DDDKG

> m396 light chain
SYELTQPPSVSVAPGKTARITCGGNWNIQSKV
HWYQQKPGQAPVLVVYDDSDRPGIPERFS
GSNSGNTALTISRVEAGDEADYYCQVDSS
SDYVFGTGTKVTVLQPKANPTVTLFPSSSE
EFQANKATLVLCLISDFYPAGAVTVAWKADGS
PKAGVETTKPSKQSNKHYAAASSYLSTLPQFW
KSHRYSQCVTQVENSLTEKVAPTECS
Sequence encodes 3D structure; structure mediates function
In simulation and in the laboratory, we can ask questions like:

- How strongly does the antibody bind its target? dG (binding free energy) or K_D (rate const.)
- How does this change as we mutate the antibody? ddG (mutational change in dG)
Platform software and active machine learning support these simulation and experimental tools
Pose this problem as active learning

- Improve the antibody sequence by iteratively selecting antibodies from a discrete set and evaluating them

> m396 mutable residues

...GTFSSYTIS...WMGGS PILGIANY...R KTVMGGMDV.../...NIGSKSVH...LVYYDDSDRPS...QVWDSSSDY

dG, ddG, or K_D
How do you get started?

- “De novo” antibody design is a major challenge for the field.

- In the last year, we’ve started from template antibodies that neutralize the closely related SARS-CoV-1 virus (early 2000’s), but don’t neutralize SARS-CoV-2.

- Likely several mutational steps away from any related, SARS-CoV-2 neutralizers, impractical to search this in the lab

- HOWEVER, we have good reason to believe that the interaction we’re trying to “restore” should be neutralizing for SARS-CoV-1 too.
The design space is vastly larger than what we can simulate or test.

CoV-1 + changes $\sim 10^{30}$

Computer Simulations 1,000,000

Laboratory Experiments 100-1,000

CoV-2
Need just one!
Enumerate many antibody designs

- Generators for novel sequences have so far been mostly tabular
 - Based on frequency of “typical” mutational “swaps”
 - OR based on expensive, high-fidelity calculations of single changes to template antibody in hypothesized complex with SARS-CoV-2 spike.

- This works all right, but can lead you to unrealistic sequence designs
 - Downstream problems in manufacturability, etc. are major concerns

> m396 mutable residues
...GTFSSYTIS...WMGGSPILGIANY...RKTV
MGGMDV.../...NIGSKSVH...LVVYDDSRPS
...QVVDSSSDY
More realistic antibody sequences via language modeling

- Use a transformer model to learn to fill “masked” amino acids in the antibody sequence

Annotated L1 from s230

```
... S S [START] Q S L V Y S D G D T Y [END] L N W ...
```

Mask

```
... S S [START] Q S L V Y S ? G D T Y [END] L N W ...
```

Score Possible Fill-ins

- D: 0.70
- A: 0.20
Our models learn to produce reasonable antibodies

mask and predict 3 central amino acids of s230’s L1 “loop”
Our models learn to produce reasonable antibodies

mask and predict all 16 amino acids of s230’s L1 “loop”
To predict how an antibody sequence will bind, we use a structure-based representation of the interactions.

$x = [0, 1, 0, 2, 0, 0, 1, ...]$

Vector of interaction type counts
Represented in feature space, binding free energy estimates feed into a multi-fidelity Gaussian process model

Executed studies
Data: \{ (x, i, y)_1, \ldots, (x, i, y)_n \}

Each is a tuple:
(, FoldX, -4.3)

Gaussian process model:
\[f: (x, i) \rightarrow \mu(x, i), \sigma(x, i) \]
The next set of simulations is selected via Bayesian optimization using the Gaussian process model.

Executed studies
Data: \{(x, i, y)_1, ..., (x, i, y)_n\}

Each is a tuple:
(, FoldX, -4.3)

Decision set: PROPOSED studies

Gaussian process model:
\(f: (x, i) \to \mu(x, i), \sigma(x, i) \)

Score:
\(s(\mu(x, i), \sigma(x, i)) \)

Selection:
\((x, i)_\ell = \text{argmax } s \)
In Silico

Agent 2

Mutant generator: 1000’s of antibodies

Machine Learning model predictions

Bayesian optimization selects 20 antibodies

Simulation

Simulation

Simulation

Agent 3

Generate mutant sequences

Predict and optimize via active machine learning

Simulate

and so on to . . . Agent 350

Results Database
Agent 1
Mutant generator: 1000’s of antibodies -> Machine Learning model predictions -> Bayesian optimization selects 20 antibodies -> Simulation

Agent 2

Agent 3

and so on to . . . Agent 350

Results Database

In Silico
Generate mutant sequences
Predict and optimize via active machine learning

Simulate
Existing Experimental data

Simulation results

10,000 simulations

10,000 simulations

~ 8 hours

~ 1-3 weeks

Simulation 1
Simulation 20

Simulation 1
Simulation 20

Simulation 1
Simulation 20

Simulation 1
Simulation 20

Mutants selected for experimental evaluation

100,000’s simulations

Mutants selected for experimental evaluation

Agent 350

Agent 350

Agent 1

Agent 1

Agent 2

Agent 2

Agent 3

Agent 3

and so on to ... Agent 350

and so on to ... Agent 350

Results Database

Results Database

~ 1-3 weeks

~ 8 hours

Simulation 20 Simulation 1

Simulation 20 Simulation 1

Simulation 20 Simulation 1

Simulation 20 Simulation 1
Existing Experimental data

~ 8 hours

Simulation results
10,000 simulations

~ 1-3 weeks

Simulation results
10,000 simulations

Agent 1

Simulation 1
Simulation 20

Agent 350

Simulation 1
Simulation 20

Agent 1

Simulation 1
Simulation 20

Agent 350

Simulation 1
Simulation 20

Agent 1

Simulation 1
Simulation 20

Agent 350

Simulation 1
Simulation 20

Agent 1

Simulation 1
Simulation 20

Agent 350

Simulation 1
Simulation 20
For two systems, we designed binders without having received any experimental feedback.

- **m396**
 - 1st iteration
 - 2nd iteration
 - SARS-1
 - SARS-2
 - BSA (neg. control)

- **80R**
 - 1st iteration

- **s230**
 - 1st iteration

ELISA:
Binding → more absorbance
Binding signal at lower concentration is better

Each iteration is ~100 designs; select antibodies shown.
This work is the product of a multidisciplinary team

- **LLNL:**
 Daniel Faissol, Adam Zemla, Ed Lau, Fangqiang Zhu, John Goforth, Denis Vashchenko, Mary Silva, Rebecca Haluska, Claudio Santiago, Sam Nguyen, Brent Segelke, Feliza Bourguet, Victoria Lao, Monica Borucki, Dina Weilhammer, Jacky Lo, Nicole Collette, and Magdalena Franco (now ThermoFisher)

- **Sandia NL:**
 Brooke Harmon, Oscar Negrete, Max Stefan

PyTorch, GPyTorch, BioPython
Maestro, Sina, Improv
FoldX, RosettaFlex