Small molecule antiviral discovery for SARS-CoV-2

Jonathan Allen, Ph.D. Informatics Scientist allen99@Inl.gov

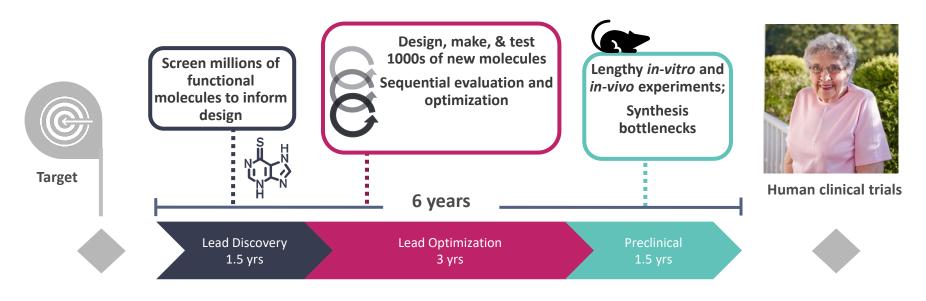
LLNL-PRES-820754

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

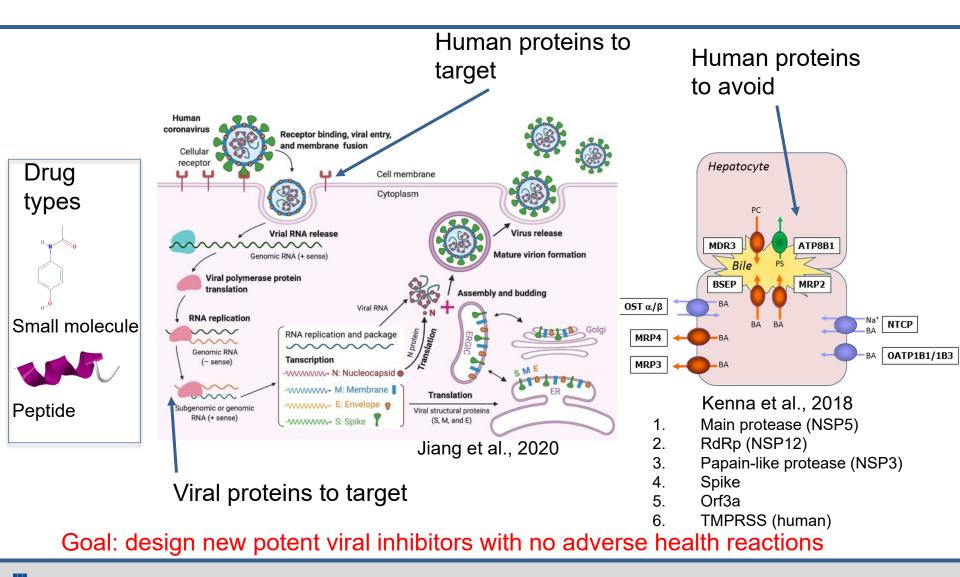
LLNL-PRES-820754


Rapid response to a disease outbreak is a national security priority

- Pathogen outbreaks cause massive disruptions to society and pandemics pose an existential threat to national security
 - Bacterial attack (Ba) 2001;
 - SARS 2003 : Cost \$40 billion ; Mortality : 813 ; Fatality rate: 9.6%
 - "Swine flue" (H1N1) 2009;
 - Ebola 2014 : Cost \$53 billion ; Mortality : 11,325 ; Fatality rate: 40%
 - Zika 2016 : Cost \$20 billion ; Mortality: ~245 (1/2018) Fatality rate: 8.3-10.5%
 - SARS-CoV-2: 500K+ deaths and growing (3/2021)
- We can reduce cost and save lives for milder outbreaks while increasing preparedness for a deadly pandemic
- Immediate actions needed to respond to a new pathogen:
 - 1. Detection and diagnostics to initiate public health response
 - 2. Identify therapeutic targets
 - existing treatments
 - propose novel treatments
 - vaccine development

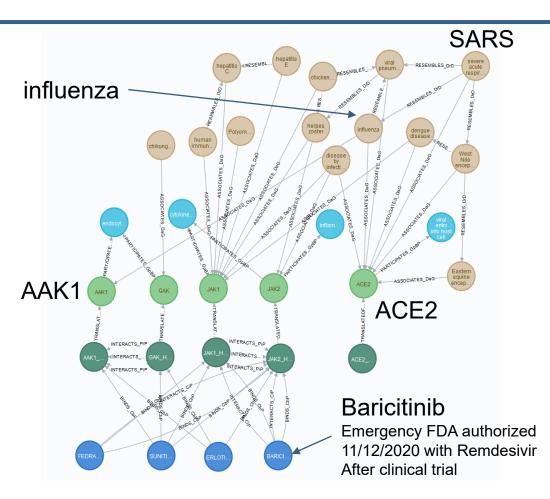
Current drug discovery: long, costly, high failure

Is there a better way to get medicines to patients?



- 33% of total cost of medicine development
- Clinical success only ~12%, indicating poor translation in patients

Source: http://www.nature.com/nrd/journal/v9/n3/pdf/nrd3078.pdf


ATOM Consortium enabling novel therapeutics from validated targets

Target identification for antiviral drug development is a challenging problem

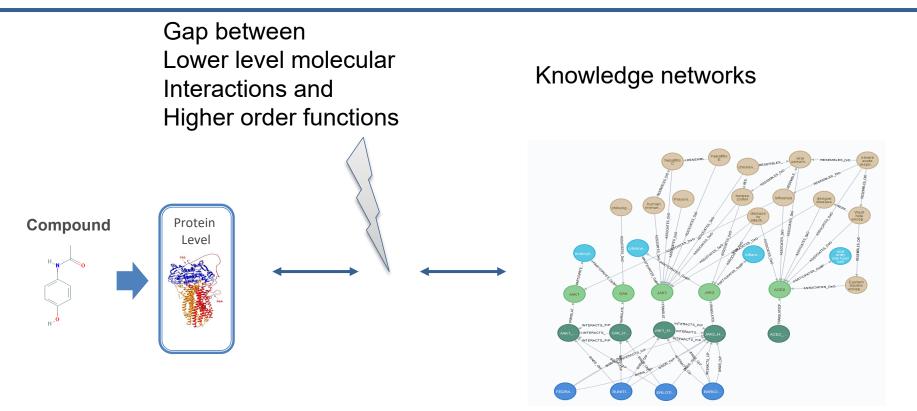
Biological knowledge networks identified drug repurposing candidates early in SARS-CoV-2 outbreak

Two targets stand out in graph: ACE2 \leftarrow SARS AAK1 \leftarrow Influenza \leftarrow SARS

clathrin-dependent endocytosis

Potential COVID-19 therapies and associated targets

Beige=infectious disease type Blue=biological process Light green=protein Dark green=gene Blue=drug


Recreation of BenevolentAl report from Feb. 4 2020 Using UCSF SPOKE graph

AAK1 and ACE2 are identified as potential targets

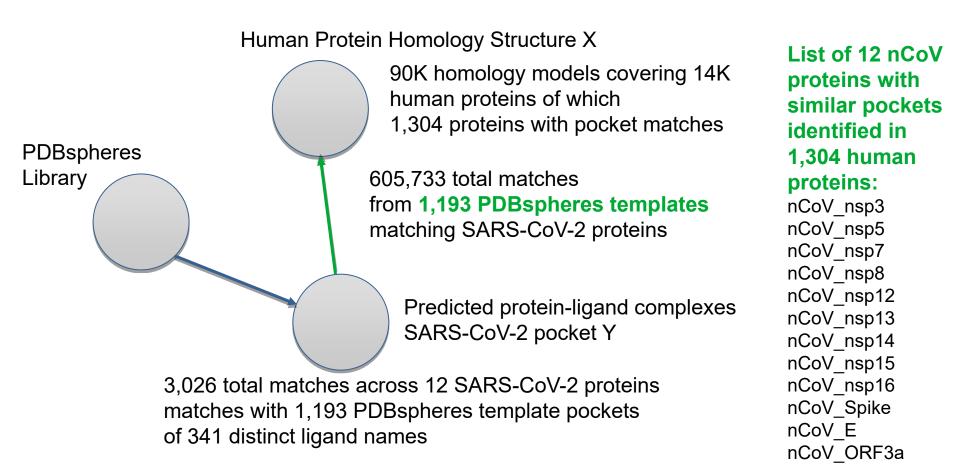
Knowledge networks can be expanded to include molecular interaction predictions

For a new pathogen: knowledge network must consider new compounds and new targets not in the database



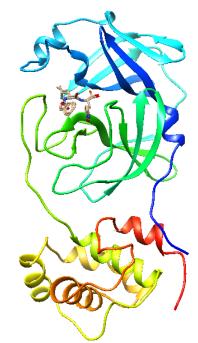
PDBspheres method description

The PDBsheres method has three main components:


- Constructed PDBspheres library of binding site templates
 - currently it contains 1,838,709 compound binding site models
 - Currently it contains 63,204 peptide binding site models
- Search system to detect pockets in proteins
 - LGA program is used to perform all structure similarity searches
 - set of pocket candidates to test can be exhaustive
 - (i.e. all 1.9 M pockets from the library)
 - or, it can be preselected based on specific targeted ligands
 - or, it can be preselected based on sequence similarity between
 - query protein and protein-pockets from the PDBspheres library
- Metrics to assess confidence in detected pocket
 - LGA/GDT (Global Distance Test) metric is used to assess similarities on Calpha level
 - GDC (Global Distance Calculations) allows evaluation on ALL atoms (including side-chains) level

PDBspheres search procedure to detect nCoV - human pocket matches

(medium confidence;15-20-60)



Modeling the virus expands drug development targets and may be needed to treat new viruses

 19 of 25 SARS-CoV-2 proteins structurally modeled with confidence
Models publicly released:

https://covid19drugscreen.llnl.gov/homology_models

- PDBSpheres: software for automated pocket identification templates for ~14K human proteins and SARS-CoV-2
 - Human pocket matching 2.1M total template matches
 - SARS-Cov-2 pocket matching 908 ligands matched to 6,961 templates from 2,681 library templates
- Future work: explicit binding affinity assignment

Two protease inhibitors verified in literature/crystal structure for main protease

General principles for target ranking

- Evidence from previous drug development efforts focusing on target
- Information on chemotypes and interaction mechanisms to jump start drug design
- Understanding of mechanism of action
- Limited off-target interaction with disease and tissue relevant proteins

Ranking of viral proteins for off-target interactions

Definitions:

Set of viral proteins: $V = \{v_1, v_2, v_3, ..., v_{13}\}$ Set of human proteins: $H = \{h_1, h_2, h_3, ..., h_{4162}\}$ Set of all ligands: $L = \{l_1, l_2, l_3, ..., l_{908}\}$ Set of ligands that bind to viral protein v_i : $O_i = \{\text{all } l_k \text{ that bind to } v_i\}$ Set of ligands that bind to human protein h_i : $T_i = \{\text{all } l_k \text{ that bind to } h_i\}$ q := index for interactions with viral protein r := index for interactions with human protein $N_{v_i l_k} \coloneqq \text{number of interactions between viral protein } v_i \text{ and ligand } l_k$ $N_{h_j l_k} \coloneqq \text{number of interactions between human protein } h_j \text{ and ligand } l_k$

Indicator function: $\mathbf{1}_{O_i T_j}(l_k) = \begin{cases} 1 & \text{if } l_k \in O_i \land l_k \in T_j \\ 0 & \text{otherwise} \end{cases}$

• Overlap score:

numerator_{v_i} =
$$\sum_{j=1}^{4162} \sum_{k=1}^{908} \left(\frac{\sum_{q=1}^{N_{v_i l_k}} GDC_{v_i l_k}^{(q)}}{N_{v_i l_k}} + \frac{\sum_{r=1}^{N_{h_j l_k}} GDC_{h_j l_k}^{(r)}}{N_{h_j l_k}} \right) \mathbf{1}_{O_i T_j}(l_k)$$

CLAIM: Lower score corresponds to less evidence of off-target interactions

Lawrence Livermore National Laboratory LLNL-PRES-820754

Ranking of viral proteins for off-target interactions

The strength of off-target interactions from each ligand that binds to the viral protein

13

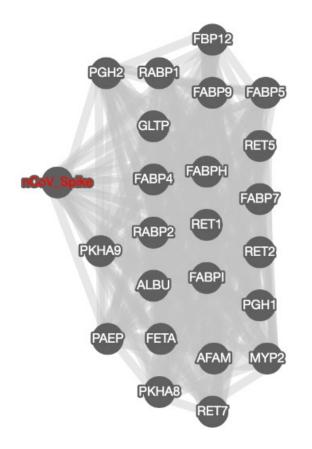
Viral protein	Off-target score
nsp9	0.23
E	0.84
nsp15	0.87
nsp14	1.62
S	4.30
nsp16	4.77
nsp3	5.59
nsp13	5.70
nsp7	6.09
nsp8	8.44
nsp5	8.54
ORF3a	14.27
nsp12	56.43

The strength of off-target interactions from each residue in the viral protein

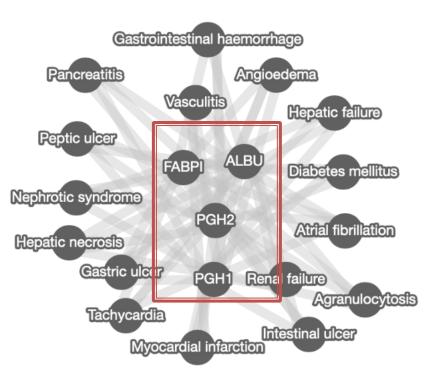
Viral protein	Off-target score	
nsp9	1.07	
nsp15	1.18	
nsp14	1.81	
S	3.77	
nsp13	5.71	
E	7.37	
nsp16	7.41	Spiko (S
nsp3	15.97	Spike (S Papain-l
nsp5	26.91	Main pro Orf3a
ORF3a	56.85	RdRp (N
nsp8	58.92	
nsp7	68.32	
nsp12	152.68	

Spike (S) Papain-like protease (NSP3) Main protease (NSP5) Orf3a RdRp (NSP12)

Spearman rank correlation coefficient = 0.868

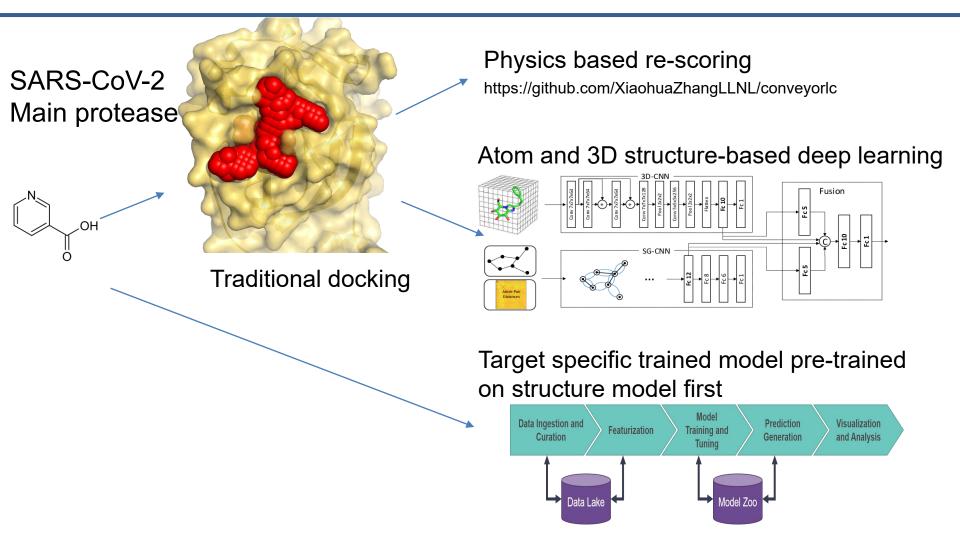

Integration of computational modeling data with a biological knowledge graph improves drug target identification

	Viral protein	Off-target score	microbiome protein encode protein encode anatomy
Ligand-	nsp9	0.23	
protein	E	0.84	and the set of the set
pocket	nsp15	0.87	NU Juli part gene
similarity	nsp14	1.62	
between	S	4.30	Side effects downood downood and a later of the state of
SARS-	nsp16	4.77	effects down of a fight go
CoV-2	nsp3	5.59	Buses compounds Jeats disease
spike	nsp13	5.70	25+ databases
protein	nsp7	6.09	exposome >2.2M nodes
and	nsp8	8.44	<i>influences</i> >12.5M edges
human	nsp5	8.54	
proteins	ORF3a	14.27	$\frac{4162}{2} \frac{908}{2} \left(\sum_{k=1}^{N_{v_i} l_k} GDC^{(q)} \sum_{k=1}^{N_{h_j} l_k} GDC^{(r)}_{h_j} \right) \text{ weight}$
	nsp12	56.43	$\sum_{i=1}^{4162} \sum_{k=1}^{908} \left(\frac{\sum_{q=1}^{N_{v_i l_k}} GDC_{v_i l_k}^{(q)}}{N_{v_i l_k}} + \frac{\sum_{r=1}^{N_{h_j l_k}} GDC_{h_j l_k}^{(r)}}{N_{h_j l_k}} \right) \mathbf{w} \text{eight} \\ 1_{O_i T_j}(l_k)$
			$\sum_{j=1}^{4162} \sum_{k=1}^{908} \left(\frac{\sum_{q=1}^{N_{v_i l_k}} GDC_{v_i l_k}^{(q)}}{N_{v_i l_k}} + \frac{\sum_{r=1}^{N_{h_j l_k}} GDC_{h_j l_k}^{(r)}}{N_{h_j l_k}} \right) \mathbf{w} \text{eight} \\ 1_{O_i T_j}(l_k)$

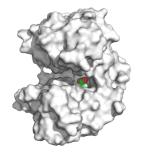


Protein targets linked to safety concerns can be used to prioritize target list

Ligand-protein pocket similarity network


Adverse drug reactions for related human proteins

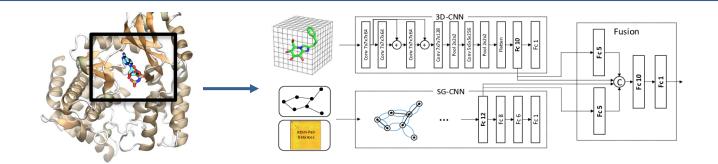
Four proteins associated with compounds with side effects


Using the main protease as a SARS-CoV-2 antiviral target

Calculated protein interactions with new molecules expand relationships in the knowledge graph

- Vina speed=*moderate* fast (1-2 minutes)
- MM/GBSA speed=moderate (62 minutes)
- Implicit solvent MD = slower (7.2 hrs/GPU)
- Explicit solvent MD = slower (at least 7.2 hrs)

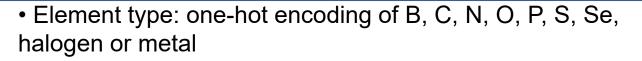
Physics based protein-ligand binding affinity does not scale to modeling billions of interactions



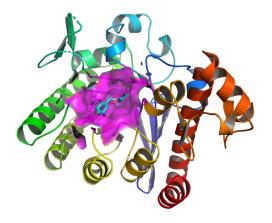
Two machine learning strategies currently employed

- Generate target specific scoring data using MM/GBSA
 - Use ML model to learn scoring function
 - Pros: Develop a faster scoring function that could match MM/GBSA accuracy
 - Cons: MM/GBSA scores still have limitations in accuracy
- Use 3D structure based spatial information to learn across multiple targets
 - Pros: Train on experimental binding data, readily applies to any new target (within reason-relative to training data)
 - Cons: Requires some 3D structure of the protein and a pocket

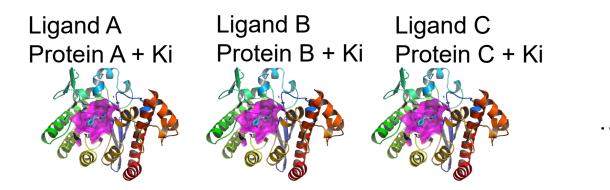
Fusion models for Atomic and molecular STructures (FAST)

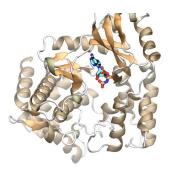

- 3D-CNNs have been used by numerous teams starting with AtomNet in 2015. (AtomWise)
- 3D Spatial Graphs were introduced with PotentialNet in 2018. (Genesis Therapeutics)
- No publications comparing the approaches directly
- Our results suggest potential benefits for combining two approaches

Open Source: https://github.com/llnl/fast


Jones, D., Kim, H et al., 2021 JCIM (accepted)

Extract atomic features that generalize across multiple targets


- Atom hybridization (1, 2, or 3)
- Number of heavy atom bonds (i.e., heavy valence)
- Number of bonds with other heteroatoms
- Structural properties: bit vector (1 where present) encoding of hydrophobic, aromatic, acceptor, donor, ring
- Partial charge
- Molecule type to indicate protein atom versus ligand atom (-1 for protein, 1 for ligand)
- Van der Waals radius



Combining representations improves prediction accuracy

Models trained on a dataset called 2016 version of PDBBind http://www.pdbbind.org.cn/

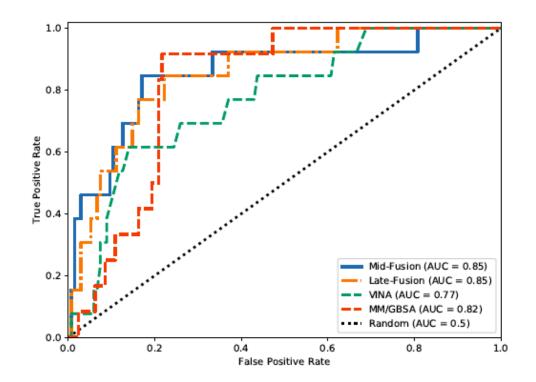
Created a special hold out set – structures taken from 2019 with a detailed analysis to find structurally novel pockets and novel ligands – 222 complexes.

Combining representations improves prediction accuracy

Traditional "test" set from 2016

Model	r^2	Pearson r	Spearman r	MAE	RMSE
SG-CNN (R)	.424	.666	.647	1.321	1.650
SG-CNN (G)	.519	.747	.746	1.194	1.508
SG-CNN $(R + G)$.600	.782	.766	1.084	1.375
3D-CNN (R)	.523	.723	.716	1.164	1.501
3D-CNN (G)	.420	.649	.658	1.294	1.655
3D-CNN (R + G)	.397	.677	.657	1.334	1.688
Late Fusion	.628	.808	.803	1.044	1.326
Mid-level Fusion	.638	.810	.807	1.019	1.308
Pafnucy ²¹	-	.78	-	1.13	1.42
KDeep ¹²	-	.82	.82	-	1.27
Fusion (Ligand only)	-0.916	.485	.492	2.495	3.008
Fusion (Pocket only)	-2.380	.501	.485	3.485	3.995

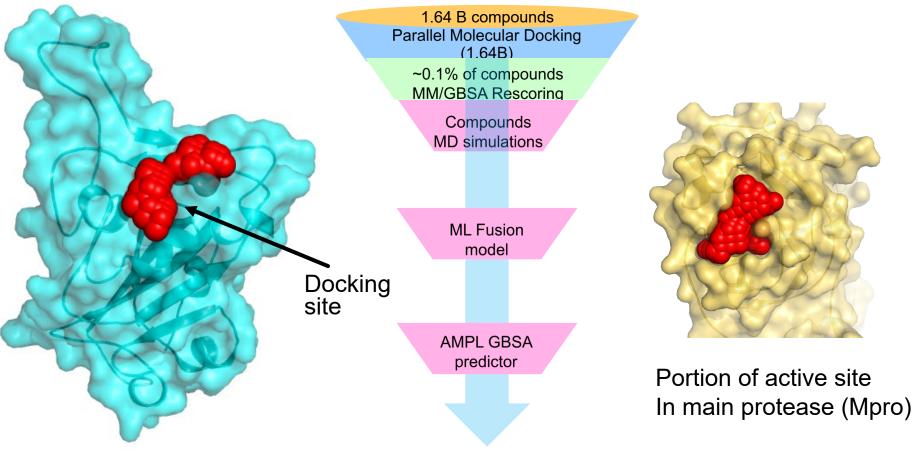
Method	Pearson r	Spearman r	MAE	RMSE
Vina	.599	.605	-	-
MM/GBSA	.647	.649	-	-
Mid-level Fusion	.803	.797	1.035	1.327


Our challenging hold out set from 2019

Model	Pearson r	$Spearman \ r$	MAE	RMSE
SG-CNN	.515	.511	1.152	1.450
3D-CNN	.427	.406	1.211	1.488
Late Fusion	.539	.525	1.062	1.326
Mid-level Fusion	.545	.532	1.074	1.338
KDeep ¹²	.487	.478	1.135	1.424
Pafnucy ²¹	.528	.528	1.106	1.381

Lawrence Livermore National Laboratory

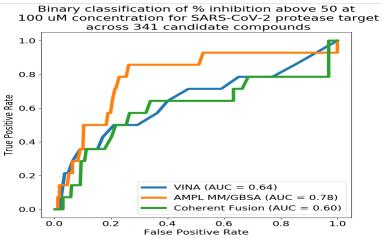
Combining representations improves prediction accuracy



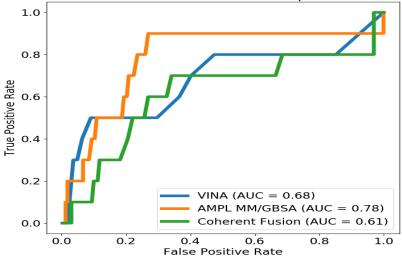
Preliminary observations indicate Fusion model provides a more scalable alternative or compliment to more expensive scoring functions

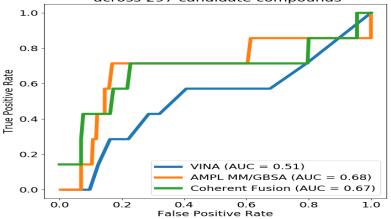
Fusion model scores 10,000 poses per second (with 6 compute nodes)

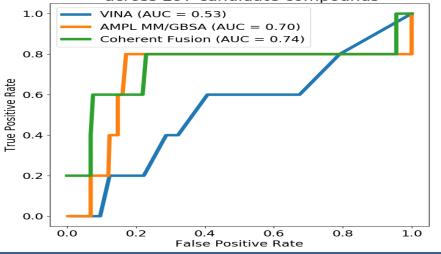
Identified 10 lead compounds as potential spike or Mpro antivirals with 5 compounds interfering with cell infection



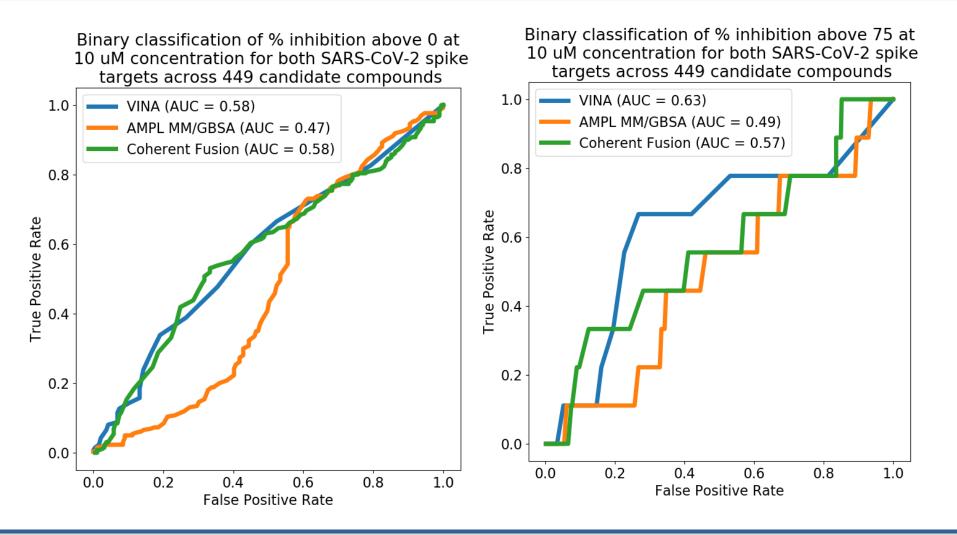
Receptor binding domain of SARS-CoV-2 spike protein

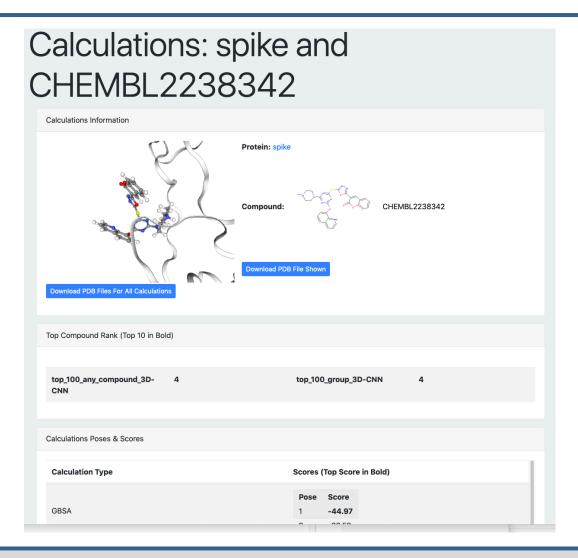

LDRD 20-ERD-065 "Identifying Potential Antiviral Small Molecules against COVID-19 " DOE NVBL BER "Molecular design and analysis to inform therapeutics related to COVID-19"


Predictive value of different scoring methods compared against initial experimental screens

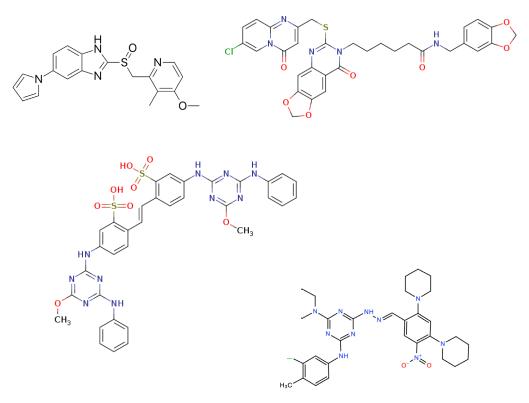

Binary classification of % inhibition above 75 at 100 uM concentration for SARS-CoV-2 protease target across 341 candidate compounds

Binary classification of % inhibition above 50 at 100 uM concentration for SARS-CoV-2 protease2 target across 297 candidate compounds

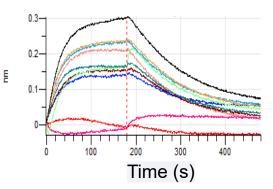

Binary classification of % inhibition above 75 at 100 uM concentration for SARS-CoV-2 protease2 target across 297 candidate compounds


Predictive value of different scoring methods compared against initial experimental screens

Search Calculation By Protein, Compound, Type, and Score Threshold using Web Server



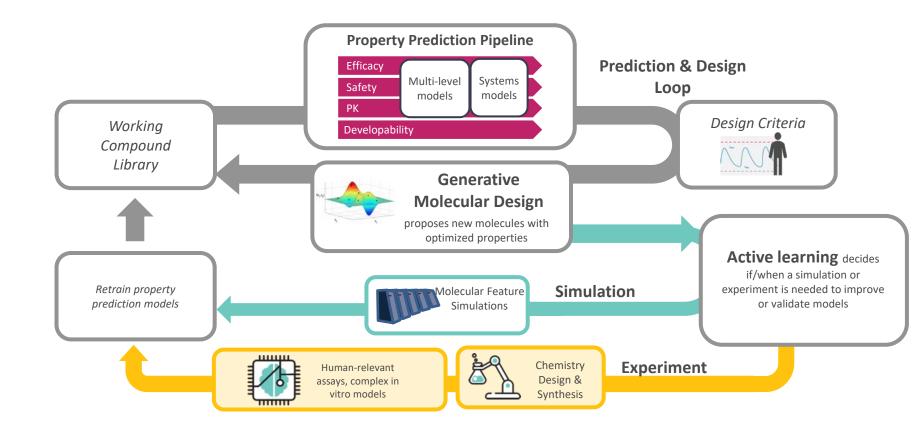
LLNL-PRES-820754


https://covid19drugscreen.llnl.gov/

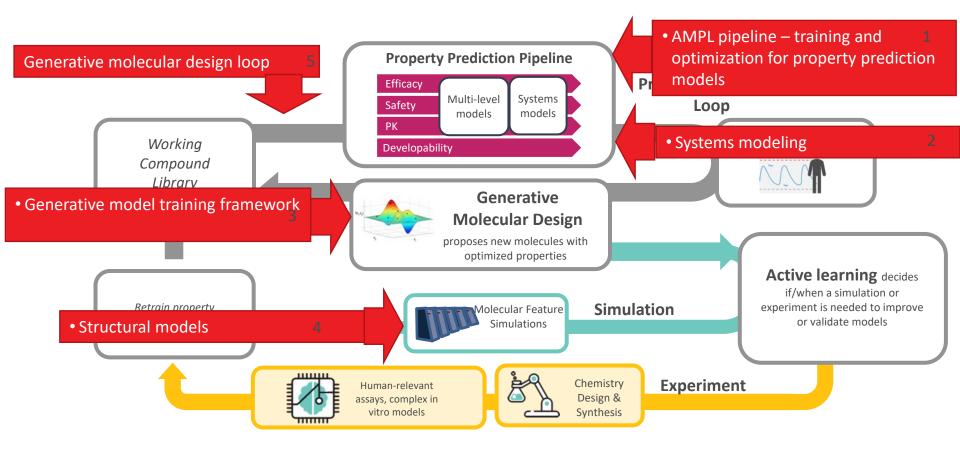
Identified 10 lead compounds as potential spike or Mpro antivirals with 5 compounds interfering with cell infection

Kinetic curves

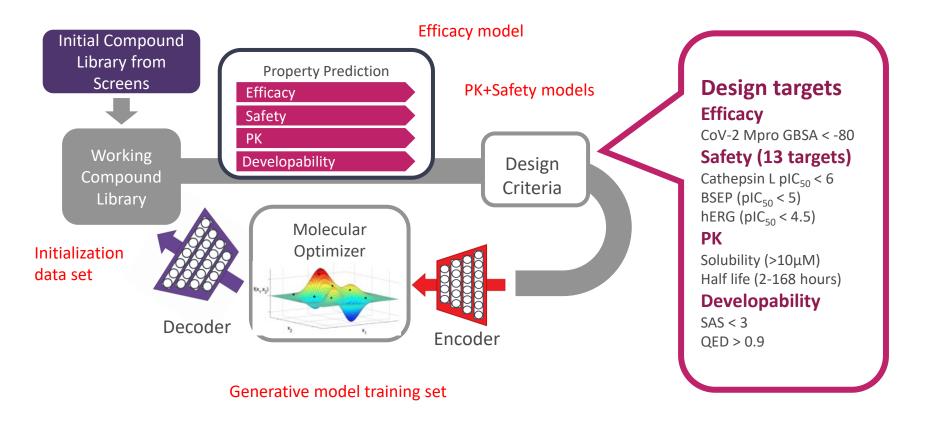
645 compounds screened for Mpro575 compounds screened for spike71 common compounds screened both


Five promising (4 main protease and 1 spike) compounds, as identified by *in vitro* experiments, have shown to strongly inhibit in the live virus assay.

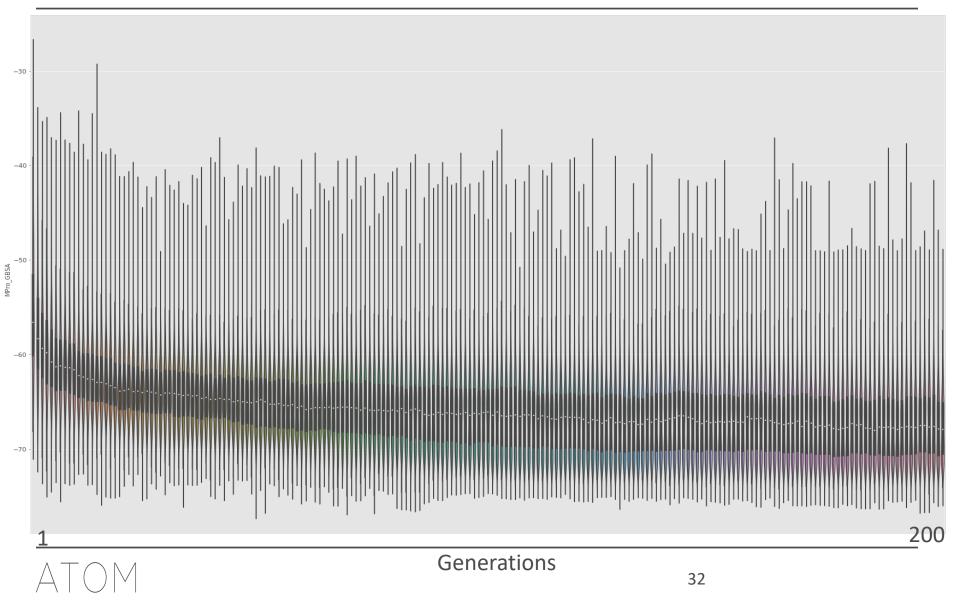
"Discovery of Small-molecule Inhibitors of SARS-CoV-2 Proteins Using a Computational and Experimental Pipeline". Lau et al., 2021 (In submission)


LDRD 20-ERD-065 "Identifying Potential Antiviral Small Molecules against COVID-19" DOE NVBL BER "Molecular design and analysis to inform therapeutics related to COVID-19"

The ATOM Platform Active Learning Drug Discovery Framework



The ATOM Platform Active Learning Drug Discovery Framework



Targeting GMD platform for opensource release after partner testing (currently Frederick National Lab, LBNL, Purdue)

Design of the SARS-CoV-2 main protease inhibitor

Optimizer finds new molecules with predicted increase in Mpro binding

Next steps

- Begin compound synthesis and testing of new molecules
 - Measure activity inhibition of SARS-CoV-2 Mpro
 - Measure activity against additional off-target safety and PK parameters.
- Re-tune machine learning models using initial experimental feedback
- Improve prediction of model uncertainty to better inform active learning
- Improve training of generative model
- Increase scaling of design optimization loop

Acknowledgement

Target identification: Adam Zemla (Structural modeling), Jeffrey Drocco (Structural modeling and analysis), Sarah Sandholtz (Structural modeling and analysis), Marisa Torres (Graph database and analysis), Mary Silva (Graph database and analysis), Monica Borucki (Virology)Thanks to UCSF SPOKE Team (Sharat Israni, Sergio Baranzini)

Small molecule data science: Kevin McLoughlin, Stewart He, Garrett Stevenson, Hyojin Kim, Derek Jones, Marisa Torres, Aiden Epstein, Adam Zemla

Molecular modeling: Xiaohua Zhang, Brian Bennion, Dan Kirshner, Sergio Wong, Drew Bennett, Felice Lightstone

Experimental team: Oscar Negrete (Sandia), Sean Lund (Sandia) ; Brent Segalke, Feliza Bourguet, Jacky Lo, Deepa Murugesh, Ed Saada

Funding: LLNL-LDRD, DOE-NVBL, DOE-ATOM, DoD-DTRA

