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Inertial Confinement Fusion (ICF) compresses deuterium-tritium 
(DT) fuel to extreme conditions to produce fusion energy

§ ICF experiments seek to create immense 
amounts of energy via fusion reactions

§ Reaching fusion “ignition” is challenging; 
the physics is complex and there are many 
sources of performance degradation 

§ We rely on computer models to design 
experiments, but even our best models 
are not predictive of all ICF experiments

Fuel capsule 
converges ~30x

~2 mm diameter

Images: L. Berzak Hopkins
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New data analysis tools can improve how we design and 
understand inertial confinement fusion (ICF) experiments

Optimize design 
with simulations

NIF Experiment

Re-optimize in light of experimental evidence
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Machine learning can improve the design loop by explicitly updating 
models using experimental evidence

Train ML models to 
emulate ICF codes
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Machine learning (ML) models are fast representations of 
expensive simulations

Data Points

Neural Net

§ ML models emulate physics codes 
by learning the relationship 
between inputs/outputs

§ Models enable us to estimate 
results where no data exist

§ Examples:
— Polynomial curve fitting
— Power laws 
— Neural networks (NN)

ML models are fast approximations to expensive simulations

Simulation Inputs

Simulation Outputs
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We calibrate ML models using a technique called transfer learning

Can transfer learning be used to “transfer” between 
simulations and experiments?

Large image database

Image label

Small NIF optics database

Damage label
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Ocean

Car

Dog

Retrain to solve 
different, but 
related task

“Automated optics inspection analysis for NIF” L. Kegelmeyer et al.
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Train NN on large 
database of cheap 

simulations

Transfer learning is used to make more predictive models of 
ICF experiments 

Freeze all but the 
last layers of the 

network, retrain on 
sparse, expensive 

data

Simulation Inputs

Simulation Outputs

Experiment Inputs

Experiment Outputs
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§ The data* includes:
— 30k low fidelity 1D LILAC simulations

• Spans a 9D input space with varying laser pulse & capsule dimensions
— 23 High fidelity simulations
— 23 experiments with measurements of yield, bang time, Tion, rhoR, burnwidth

A series of Omega ICF experiments provides a good testbed for 
transfer learning from simulations to experiments

*Data provided by Varchas
Gopalaswamy & Riccardo Betti
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NN+TL: predict high-fidelity simulations with low computational 
cost

Low-Fi. NN
High-Fi. NN (train)
High-Fi. NN (test)
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NN+TL: more predictive of future Omega experiments than 
simulations

Experiment DJINN models can predict 
future Omega experiments
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Each model suggests a different optimal* implosion

*Maximum Yield·(⍴R)2

DJINN: Optimal Laser Pulses

Low-fidelity 
NN 

High-fidelity 
NN

Experiment 
NN

Optimal Capsules
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DJINN: Optimal Laser Pulses

Low-fidelity 
NN 

High-fidelity 
NN

Experiment 
NN

Optimal Capsules

Each model suggests a different optimal* implosion

Max 1D Yield

Fix LPI but 
maintain 
velocity

Control 
hydro. 

instabilities at 
higher ⍴R

*Maximum Yield·(⍴R)2
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We are using machine learning to create more predictive models 
by integrating ICF simulations and experimental data 

§ ML models can be queried millions of times to rapidly search for 
simulations to optimize designs

§ Transfer learning is a novel method for creating predictive models 

§ You can try these techniques on your own data: 
— Download our neural network software at github.com/llnl/djinn
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Transfer learning enables us to continuously improve our 
predictive capabilities by updating our models with data

Simulations won’t change their map, 
although input transformation models 
(like multipliers) can rotate and scale it

Machine learning methods can 
update the map with observations 
not in the original simulation model
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Applying transfer learning to NIF experiments is more challenging

§ For Omega direct drive experiments, capsule-only 
simulations are analogous to the experiment

§ For NIF indirect drive experiments, hohlraum
simulations are analogous to the experiment
— TL with hohlraums is challenging for several reasons:

• Hohlraum simulations are very expensive (can run ~5k in a 
month timeframe)

• The NIF experimental design space is extremely large 
(meaning lots of inputs, and therefore lots of simulations 
needed for the NN)

§ So how can we use TL to help improve predictions of 
NIF experiments? 

Simulation Inputs

Simulation Outputs
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We can explore a different approach to transfer learning from 
simulations to experiments using autoencoders

§ Autoencoders are a type of neural network 
traditionally used for data compression
— Remove redundant information and learn 

correlations between observables

Observables (Yield, Tion, X-ray Images, etc)

Compressed Data
= “Latent Space”

Compress 

Decompress

Observables (Yield, Tion, X-ray Images, etc)

Encode Decode

“Latent space”

§ Autoencoders are simply specialized mappings 
from outputs to outputs
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Can we transfer learn an autoencoder to map from simulation outputs 
to experimental outputs? 
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Step 1: Train an autoencoder to map from simulation 
outputs to simulation outputs with large database
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Can we transfer learn an autoencoder to map from simulation outputs 
to experimental outputs? 

Si
m

ul
at

io
n 

ou
tp

ut
s

Si
m

ul
at

io
n 

ou
tp

ut
s

Ex
pe

rim
en

t o
ut

pu
ts

Step 2: Use pre-shot simulation outputs and actual 
experimental outputs to transfer learn the autoencoder
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The autoencoder gives a “correction” to simulation predictions such 
that they are more consistent with previous experiments

SimulationSimulation
inputs

Simulation 
Outputs

Expected 
experiment

outputs

TL AE

Step 3: Use our “calibrated” predictions to search for 
optimal experimental designs
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We can optimize experiments using a map that is updated as we gain 
experimental data

Sim. inputs

Expected exp.
outputs

Run 
simulation

Simulation 
outputs

Use optimization 
algorithm select 

new inputs

Run optimal 
experiment 

Update AE
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A thought experiment: Use transfer learning to guide a NIF 
campaign to maximize ITFX~Yield*DSR2

Update 
Model with 
Data
•Transfer learn 
the autoencoder

Pick the Next 
Experiment
•Search for max 
Yield*DSR2

Run the Best 
Experiment

Populate 
Design 

Space with 
Simulations

Build Initial 
Autoencoder

Run Some 
Random 

Experiments Phase 2: 
Exploit and 
Optimize*

Phase 1: Explore and Build Model

Ø “Experiment”: a Fake Model of NIF:

*Similar to Google Optometrist Algorithm

𝐸𝑥𝑝 𝑥 = 𝐻𝑦𝑑𝑟𝑎(𝐵𝑥)

𝐵 is a random matrix
DSR=down scatter ratio
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The transfer learned autoencoder gets better at predicting the 
experiments as it acquires data

5 exp 10 exp 15 exp

Sim. Only
TL AE
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Transfer learned model finds the optimal design within ~6 
experiments 

§ We repeat the design optimization 
loop for several random realizations of 
the “experiment” ground truth:

𝐸𝑥𝑝 𝑥 = 𝐻𝑦𝑑𝑟𝑎(𝐵𝑥)

§ On average, the TL optimization loop
enables you to find the true optimal with
~6 experiments; the simulation only 
model gets within 5% of the true optimal
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Preliminary results indicate autoencoder TL is possible with the 
existing NIF database

§ For the Bigfoot campaign we have a set of 
simulation predictions and experimental 
observations for 13 experiments

§ An autoencoder trained with only 6 
observables transfer learns to the 
experimental data accurately

§ Next step: use the autoencoder mapping 
to correct predictions for the next Bigfoot 
shot, and see if it is more accurate than 
the simulation-only prediction
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New data analysis tools can improve how we design and 
understand inertial confinement fusion (ICF) experiments

Optimize design 
with simulations

NIF Experiment

Re-optimize in light of experimental evidence
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We design experiments to achieve a specific goal, such as 
increased areal density or high yield

Neutron Yield 
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§ In ICF, we use simulations to 
search for experimental inputs 
(laser pulse, capsule) that achieve 
our goal 

§ This can be expensive and
challenging as the NIF design 
space is large, and simulations 
aren’t accurate everywhere

§ Machine learning can help us find 
optimal designs faster
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New data analysis tools can improve how we design and 
understand ICF implosions

Optimize design 
with simulations

NIF Experiment

Are these 
consistent?

Are there other 
explanations for 

the data?

How can we 
better explore vast 
design spaces for 

“optimal” 
implosions?

How do we use 
experimental 

data to update 
our models?

Re-optimize in light of experimental evidence
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The transfer learned autoencoder gets more accurate as 
experimental data is accumulated

5 exp 10 exp 15 exp

Sim. Only
TL AE
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Alternatively, we can learn the mapping from simulation observables 
to experimental observables via an autoencoder

Hohl/Cap Sim.
Hohlraum/capsule 

Inputs

Transfer learn sim obs-> experiment obs
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