Data Science in the News

Did you know we have a monthly newsletter? View past volumes and subscribe.

LLNL and BridgeBio announce trials for supercomputing-discovered cancer drug

June 6, 2024 - 
In a substantial milestone for supercomputing-aided drug design, LLNL and BridgeBio Oncology Therapeutics (BridgeBio) today announced clinical trials have begun for a first-in-class medication that targets specific genetic mutations implicated in many types of cancer. The development of the new drug—BBO-8520—is the result of collaboration among LLNL, BridgeBio and the National Cancer...

The Laboratory’s habit of innovation

June 4, 2024 - 
LLNL’s HPC and data science capabilities play a significant role in international science research and innovation, and Lab researchers have won 10 R&D 100 Awards in the Software–Services category in the past decade. The latest issue of Science & Technology Review features several award-winning projects, including ZFP and CANDLE: (1) ZFP introduces a new method of compressing large data sets...

Statistical framework synchronizes medical study data

June 3, 2024 - 
The risks and benefits of heart surgery, chemotherapy, vaccination, and other medical treatments can change based on the time of day they are administered. These variations arise in part due to changes in gene expression levels throughout the 24-hour day-night cycle, with around 50% of genes displaying oscillatory behavior. To evaluate new therapies, investigators study how a gene’s...

GUIDE team develops approach to redesign antibodies against viral pandemics

May 8, 2024 - 
In a groundbreaking development for addressing future viral pandemics, a multi-institutional team involving LLNL researchers has successfully combined an AI-backed platform with supercomputing to redesign and restore the effectiveness of antibodies whose ability to fight viruses has been compromised by viral evolution. The team’s research is published in the journal Nature and showcases a...

Machine learning tool fills in the blanks for satellite light curves

Feb. 13, 2024 - 
When viewed from Earth, objects in space are seen at a specific brightness, called apparent magnitude. Over time, ground-based telescopes can track a specific object’s change in brightness. This time-dependent magnitude variation is known as an object’s light curve, and can allow astronomers to infer the object’s size, shape, material, location, and more. Monitoring the light curve of...

LLNL’s Kailkhura elevated to IEEE senior member

Nov. 8, 2023 - 
IEEE, the world’s largest technical professional organization, has elevated LLNL research staff member Bhavya Kailkhura to the grade of senior member within the organization. IEEE has more than 427,000 members in more than 190 countries, including engineers, scientists and allied professionals in the electrical and computer sciences, engineering and related disciplines. Just 10% of IEEE’s...

Making machine learning safer for biomedicine

Aug. 15, 2023 - 
It’s hard to understate the impact machine learning will have on biomedicine. The ability to train computers to spot patterns by analyzing large, complex datasets is driving discoveries in heart disease, cancer, neurodegenerative diseases and more. For instance, Argonne National Laboratory (ANL) has used machine learning to aid cancer research and accelerate COVID-19 antiviral discovery. One...

Explainable artificial intelligence can enhance scientific workflows

July 25, 2023 - 
As ML and AI tools become more widespread, a team of researchers in LLNL’s Computing and Physical and Life Sciences directorates are trying to provide a reasonable starting place for scientists who want to apply ML/AI, but don’t have the appropriate background. The team’s work grew out of a Laboratory Directed Research and Development project on feedstock materials optimization, which led to...

Consulting service infuses Lab projects with data science expertise

June 5, 2023 - 
A key advantage of LLNL’s culture of multidisciplinary teamwork is that domain scientists don’t need to be experts in everything. Physicists, chemists, biologists, materials engineers, climate scientists, computer scientists, and other researchers regularly work alongside specialists in other fields to tackle challenging problems. The rise of Big Data across the Lab has led to a demand for...

Scientists develop model for more efficient simulations of protein interactions linked to cancer

March 28, 2023 - 
LLNL scientists have developed a theoretical model for more efficient molecular-level simulations of cell membranes and their lipid-protein interactions, part of a multi-institutional effort to better understand the behavior of cancer-causing membrane proteins. Developed under an ongoing collaboration by the Department of Energy and the National Cancer Institute (NCI) aimed at modeling cell...

Cognitive simulation supercharges scientific research

Jan. 10, 2023 - 
Computer modeling has been essential to scientific research for more than half a century—since the advent of computers sufficiently powerful to handle modeling’s computational load. Models simulate natural phenomena to aid scientists in understanding their underlying principles. Yet, while the most complex models running on supercomputers may contain millions of lines of code and generate...

Understanding the universe with applied statistics (VIDEO)

Nov. 17, 2022 - 
In a new video posted to the Lab’s YouTube channel, statistician Amanda Muyskens describes MuyGPs, her team’s innovative and computationally efficient Gaussian Process hyperparameter estimation method for large data. The method has been applied to space-based image classification and released for open-source use in the Python package MuyGPyS. MuyGPs will help astronomers and astrophysicists...

LLNL researchers win HPCwire award for applying cognitive simulation to ICF

Nov. 17, 2022 - 
The high performance computing publication HPCwire announced LLNL as the winner of its Editor’s Choice award for Best Use of HPC in Energy for applying cognitive simulation (CogSim) methods to inertial confinement fusion (ICF) research. The award was presented at the largest supercomputing conference in the world: the 2022 International Conference for High Performance Computing, Networking...

LLNL cancer research goes exascale

July 20, 2022 - 
An LLNL team will be among the first researchers to perform work on the world’s first exascale supercomputer—Oak Ridge National Laboratory’s Frontier—when they use the system to model cancer-causing protein mutations. Led by Harsh Bhatia, a computer scientist in the Center of Applied Computing at LLNL, the team was awarded limited access to Frontier under the DOE's Advanced Scientific...

Panel discussion spotlights COVID-19 R&D

July 19, 2022 - 
The DSI’s career panel series continued on June 28 to highlight some of LLNL’s COVID-19 research projects. Three data scientists—Emilia Grzesiak, Derek Jones, and Priyadip Ray—joined moderator and data scientist Stewart He to talk about their work in drug screening, protein–drug compounds, antibody–antigen sequence analysis, and risk factor identification. He, who earned a PhD in Computer...

UC Merced students work with LLNL mentors on potential new drugs to combat COVID-19

June 30, 2022 - 
Students from the University of California, Merced worked with mentors at LLNL to identify drug compounds that could be used to treat COVID-19 during a two-week Data Science Challenge (DSC) that concluded on June 6. For the first time in the DSC series since the COVID-19 pandemic began in 2020, Lab mentors visited the college campus to provide in-person guidance for five teams of UC Merced...

Assured and robust…or bust

June 30, 2022 - 
The consequences of a machine learning (ML) error that presents irrelevant advertisements to a group of social media users may seem relatively minor. However, this opacity, combined with the fact that ML systems are nascent and imperfect, makes trusting their accuracy difficult in mission-critical situations, such as recognizing life-or-death risks to military personnel or advancing materials...

LLNL’s Brase discusses advances by ATOM in accelerating drug discovery pipeline

June 7, 2022 - 
The private-public Accelerating Therapeutic Opportunities in Medicine (ATOM) consortium is showing “significant” progress in demonstrating that HPC and M) tools can speed up the drug discovery process, said Jim Brase, ATOM co-lead and LLNL’s deputy associate director for data science. The consortium currently boasts more than a dozen member organizations, including national laboratories...

CASC team wins best paper at visualization symposium

May 25, 2022 - 
A research team from LLNL’s Center for Applied Scientific Computing won Best Paper at the 15th IEEE Pacific Visualization Symposium (PacificVis), which was held virtually on April 11–14. Computer scientists Harsh Bhatia, Peer-Timo Bremer, and Peter Lindstrom collaborated with University of Utah colleagues Duong Hoang, Nate Morrical, and Valerio Pascucci on “AMM: Adaptive Multilinear Meshes.”...

Kevin McLoughlin applies computational biology to complex problems

May 17, 2022 - 
Kevin McLoughlin has always been fascinated by the intersection of computing and biology. His LLNL career encompasses award-winning microbial detection technology, a COVID-19 antiviral drug design pipeline, and work with the ATOM consortium. The appeal for him in these projects lies at the intersection of computing and biology. “I love finding ways to visualize data that reveal relationships...