Data Science in the News

Did you know we have a monthly newsletter? View past volumes and subscribe.

Measuring failure risk and resiliency in AI/ML models

Aug. 27, 2024 - 
The widespread use of artificial intelligence (AI) and machine learning (ML) reveals not only the technology’s potential but also its pitfalls, such as how likely these models are to be inaccurate. AI/ML models can fail in unexpected ways even when not under attack, and they can fail in scenarios differently from how humans perform. Knowing when and why failure occurs can prevent costly...

Measuring attack vulnerability in AI/ML models

Aug. 26, 2024 - 
LLNL is advancing the safety of AI/ML models in materials design, bioresilience, cyber security, stockpile surveillance, and many other areas. A key line of inquiry is model robustness, or how well it defends against adversarial attacks. A paper accepted to the renowned 2024 International Conference on Machine Learning explores this issue in detail. In “Adversarial Robustness Limits via...

International workshop focuses on AI for critical infrastructure

Aug. 12, 2024 - 
On August 4, LLNL researchers Felipe Leno da Silva and Ruben Glatt hosted the AI for Critical Infrastructure workshop at the 33rd International Joint Conference on Artificial Intelligence (IJCAI) in Jeju, South Korea. Professors Wencong Su (University of Michigan – Dearborn) and Yi Wang (University of Hong Kong) joined them in organizing the workshop focused on exploring AI opportunities and...

Evaluating trust and safety of large language models

Aug. 8, 2024 - 
Accepted to the 2024 International Conference on Machine Learning, two Livermore papers examined trustworthiness—how a model uses data and makes decisions—of large language models, or LLMs. In “TrustLLM: Trustworthiness in Large Language Models,” Bhavya Kailkhura and collaborators from universities and research organizations around the world developed a comprehensive trustworthiness...

Probing carbon capture, atom-by-atom

July 31, 2024 - 
A team of scientists at LLNL has developed a machine-learning model to gain an atomic-level understanding of CO2 capture in amine-based sorbents. This innovative approach promises to enhance the efficiency of direct air capture (DAC) technologies, which are crucial for reducing the excessive amounts of CO2 already present in the atmosphere. The low cost of these sorbents has enabled several...

Department of Energy announces FASST initiative

July 16, 2024 - 
On July 16, the Department of Energy formally announced the proposed Frontiers in Artificial Intelligence for Science, Security and Technology (FASST) initiative via the web page www.energy.gov/fasst (with accompanying video and fact sheet). As stated on the web page, the speed and scale of the AI landscape are significant motivators for investing in strategic AI capabilities: “Without FASST...

AI, fusion, and national security with Brian Spears (VIDEO)

July 13, 2024 - 
This episode of the Eye on AI podcast delves into the cutting-edge world of AI and high-performance computing with Brian Spears, director of LLNL's AI Innovation Incubator. The episode is presented here as a video with the following description: "Brian shares his experience in driving AI into national security science and managing the nation’s nuclear stockpile. With a PhD in mechanical...

The surprising places you’ll find machine learning (VIDEO)

June 20, 2024 - 
LLNL data scientists are applying ML to real-world applications on multiple scales. A new DSI-funded video highlights research at the nanoscale (developing better water treatment methods by predicting the behavior of water molecules under the extremely confined conditions of nanotubes); mesoscale (determining the likelihood and location of a dangerous wildfire-causing phenomenon called arcing...

Machine learning optimizes high-power laser experiments

May 17, 2024 - 
Commercial fusion energy plants and advanced compact radiation sources may rely on high-intensity, high-repetition rate lasers, capable of firing multiple times per second, but humans could be a limiting factor in reacting to changes at these shot rates. Applying advanced computing to this problem, a team of international scientists from LLNL, Fraunhofer Institute for Laser Technology (ILT)...

Harnessing the power of AI for a safe and secure future (VIDEO)

May 13, 2024 - 
LLNL, alongside the Department of Energy’s (DOE’s) 17 national labs, is harnessing the transformative potential of AI for a safer, more secure future. In 2022, LLNL made history by achieving fusion ignition, marking a pivotal moment for national security and clean energy. While AI continues to unlock new insights into fusion, through the combination of cutting-edge computer modeling...

Igniting scientific discovery with AI and supercomputing (VIDEO)

April 15, 2024 - 
LLNL’s fusion ignition breakthrough, more than 60 years in the making, was enabled by a combination of traditional fusion target design methods, high-performance computing (HPC), and AI techniques. The success of ignition marks a significant milestone in fusion energy research, and was facilitated in part by the precision simulations and rapid experimental data analysis only possible through...

Predicting climate change impacts on infrastructure (VIDEO)

Feb. 26, 2024 - 
At LLNL, electrical grid experts and climate scientists work together to bridge the gap between infrastructure and climate modeling. By taking weather variables such as wildfire, flooding, wind, and sunlight that directly impact the electrical grid into consideration, researchers can improve electrical grid model projections for a more stable future. In a new video, LLNL computer scientist...

LLNL’s Kailkhura elevated to IEEE senior member

Nov. 8, 2023 - 
IEEE, the world’s largest technical professional organization, has elevated LLNL research staff member Bhavya Kailkhura to the grade of senior member within the organization. IEEE has more than 427,000 members in more than 190 countries, including engineers, scientists and allied professionals in the electrical and computer sciences, engineering and related disciplines. Just 10% of IEEE’s...

Explainable artificial intelligence can enhance scientific workflows

July 25, 2023 - 
As ML and AI tools become more widespread, a team of researchers in LLNL’s Computing and Physical and Life Sciences directorates are trying to provide a reasonable starting place for scientists who want to apply ML/AI, but don’t have the appropriate background. The team’s work grew out of a Laboratory Directed Research and Development project on feedstock materials optimization, which led to...

High-performance computing, AI and cognitive simulation helped LLNL conquer fusion ignition

June 21, 2023 - 
For hundreds of LLNL scientists on the design, experimental, and modeling and simulation teams behind inertial confinement fusion (ICF) experiments at the National Ignition Facility, the results of the now-famous Dec. 5, 2022, ignition shot didn’t come as a complete surprise. The “crystal ball” that gave them increased pre-shot confidence in a breakthrough involved a combination of detailed...

Data science meets fusion (VIDEO)

May 30, 2023 - 
LLNL’s historic fusion ignition achievement on December 5, 2022, was the first experiment to ever achieve net energy gain from nuclear fusion. However, the experiment’s result was not actually that surprising. A team leveraging data science techniques developed and used a landmark system for teaching artificial intelligence (AI) to incorporate and better account for different variables and...

Patent applies machine learning to industrial control systems

May 8, 2023 - 
An industrial control system (ICS) is an automated network of devices that make up a complex industrial process. For example, a large-scale electrical grid may contain thousands of instruments, sensors, and controls that transfer and distribute power, along with computing systems that capture data transmitted across these devices. Monitoring the ICS network for new device connections, device...

Scientists develop model for more efficient simulations of protein interactions linked to cancer

March 28, 2023 - 
LLNL scientists have developed a theoretical model for more efficient molecular-level simulations of cell membranes and their lipid-protein interactions, part of a multi-institutional effort to better understand the behavior of cancer-causing membrane proteins. Developed under an ongoing collaboration by the Department of Energy and the National Cancer Institute (NCI) aimed at modeling cell...

Skywing: Open-source software aids collaborative autonomy applications

Jan. 25, 2023 - 
A new software developed at LLNL, and known as Skywing, provides domain scientists working to protect the nation’s critical infrastructure with a high-reliability, real-time software platform for collaborative autonomy applications. The U.S. modern critical infrastructure—from the electrical grid that sends power to homes to the pipelines that deliver water and natural gas and the railways...

New HPC4EI project to create 'digital twin' models for aerospace manufacturing

Jan. 19, 2023 - 
A partnership involving LLNL aimed at developing “digital twins” for producing aerospace components is one of six new projects funded under the HPC for Energy Innovation (HPC4EI) initiative, the Department of Energy’s Office of Energy Efficiency and Renewable Energy announced. Sponsored by the HPC4Manufacturing (HPC4Mfg) Program, one of the pillars of HPC4EI, the collaboration between LLNL...