Did you know we have a monthly newsletter? View past volumes and subscribe.
Measuring failure risk and resiliency in AI/ML models
Aug. 27, 2024 -
The widespread use of artificial intelligence (AI) and machine learning (ML) reveals not only the technology’s potential but also its pitfalls, such as how likely these models are to be inaccurate. AI/ML models can fail in unexpected ways even when not under attack, and they can fail in scenarios differently from how humans perform. Knowing when and why failure occurs can prevent costly...
Measuring attack vulnerability in AI/ML models
Aug. 26, 2024 -
LLNL is advancing the safety of AI/ML models in materials design, bioresilience, cyber security, stockpile surveillance, and many other areas. A key line of inquiry is model robustness, or how well it defends against adversarial attacks. A paper accepted to the renowned 2024 International Conference on Machine Learning explores this issue in detail. In “Adversarial Robustness Limits via...
LLNL researchers unleash machine learning in designing advanced lattice structures
Aug. 22, 2024 -
Characterized by their intricate patterns and hierarchical designs, lattice structures hold immense potential for revolutionizing industries ranging from aerospace to biomedical engineering, due to their versatility and customizability. However, the complexity of these structures and the vast design space they encompass have posed significant hurdles for engineers and scientists, and...
International workshop focuses on AI for critical infrastructure
Aug. 12, 2024 -
On August 4, LLNL researchers Felipe Leno da Silva and Ruben Glatt hosted the AI for Critical Infrastructure workshop at the 33rd International Joint Conference on Artificial Intelligence (IJCAI) in Jeju, South Korea. Professors Wencong Su (University of Michigan – Dearborn) and Yi Wang (University of Hong Kong) joined them in organizing the workshop focused on exploring AI opportunities and...
Evaluating trust and safety of large language models
Aug. 8, 2024 -
Accepted to the 2024 International Conference on Machine Learning, two Livermore papers examined trustworthiness—how a model uses data and makes decisions—of large language models, or LLMs. In “TrustLLM: Trustworthiness in Large Language Models,” Bhavya Kailkhura and collaborators from universities and research organizations around the world developed a comprehensive trustworthiness...
Department of Energy announces FASST initiative
July 16, 2024 -
On July 16, the Department of Energy formally announced the proposed Frontiers in Artificial Intelligence for Science, Security and Technology (FASST) initiative via the web page www.energy.gov/fasst (with accompanying video and fact sheet). As stated on the web page, the speed and scale of the AI landscape are significant motivators for investing in strategic AI capabilities: “Without FASST...
AI, fusion, and national security with Brian Spears (VIDEO)
July 13, 2024 -
This episode of the Eye on AI podcast delves into the cutting-edge world of AI and high-performance computing with Brian Spears, director of LLNL's AI Innovation Incubator. The episode is presented here as a video with the following description: "Brian shares his experience in driving AI into national security science and managing the nation’s nuclear stockpile. With a PhD in mechanical...
Signal and image science community comes together for annual workshop
June 26, 2024 -
Nearly 150 members of the signal and image science community recently came together to discuss the latest advances in the field and connect with colleagues, friends, and potential collaborators at the 28th annual Center for Advanced Signal and Image Science (CASIS) workshop. The event featured more than 50 technical contributions across six workshop tracks and a parallel tutorials session...
LLNL and BridgeBio announce trials for supercomputing-discovered cancer drug
June 6, 2024 -
In a substantial milestone for supercomputing-aided drug design, LLNL and BridgeBio Oncology Therapeutics (BridgeBio) today announced clinical trials have begun for a first-in-class medication that targets specific genetic mutations implicated in many types of cancer. The development of the new drug—BBO-8520—is the result of collaboration among LLNL, BridgeBio and the National Cancer...
DOE, LLNL take center stage at inaugural AI expo
June 4, 2024 -
Held May 7–8 in Washington, DC, the Special Competitive Studies Project (SCSP) AI Expo showcased groundbreaking initiatives in AI and emerging technologies. Kim Budil and other Lab speakers presented at center stage and the DOE exhibition booth. LLNL is rapidly expanding research investments to build transformative AI-driven solutions to critical national security challenges. While developing...
FAA awards approval for drone swarm testing
May 29, 2024 -
LLNL’s Autonomous Sensors team has received the Federal Aviation Administration’s (FAA’s) first and—to date—only certificate of authorization allowing autonomous drone swarming exercises on the Lab main campus. These flights will test swarm controls and sensor payloads used in a variety of national security applications. Autonomous drone swarms differ from those used for entertainment...
Manufacturing optimized designs for high explosives
May 13, 2024 -
When materials are subjected to extreme environments, they face the risk of mixing together. This mixing may result in hydrodynamic instabilities, yielding undesirable side effects. Such instabilities present a grand challenge across multiple disciplines, especially in astrophysics, combustion, and shaped charges—a device used to focus the energy of a detonating explosive, thereby creating a...
Harnessing the power of AI for a safe and secure future (VIDEO)
May 13, 2024 -
LLNL, alongside the Department of Energy’s (DOE’s) 17 national labs, is harnessing the transformative potential of AI for a safer, more secure future. In 2022, LLNL made history by achieving fusion ignition, marking a pivotal moment for national security and clean energy. While AI continues to unlock new insights into fusion, through the combination of cutting-edge computer modeling...
Accelerating material characterization: Machine learning meets X-ray absorption spectroscopy
May 10, 2024 -
LLNL scientists have developed a new approach that can rapidly predict the structure and chemical composition of heterogeneous materials. In a new study in ACS Chemistry of Materials, Wonseok Jeong and Tuan Anh Pham developed a new approach that combines machine learning with X-ray absorption spectroscopy (XANES) to elucidate the chemical speciation of amorphous carbon nitrides. The research...
UC/LLNL joint workshop sparks crucial dialogue on AI safety
May 2, 2024 -
Representatives from DOE national laboratories, academia and industry convened recently at the University of California Livermore Collaboration Center (UCLCC) for a workshop aimed at aligning strategies for ensuring safe AI. The daylong event, attended by dozens of AI researchers, included keynote speeches by thought leaders, panels by technical researchers and policymakers and breakout...
Welcome new DSI team members
April 2, 2024 -
When Data Science Institute (DSI) director Brian Giera and deputy director Cindy Gonzales began planning activities for fiscal year 2024 and beyond, they immediately realized that LLNL’s growth in data science and artificial intelligence (AI)/machine learning (ML) research requires corresponding growth in the DSI’s efforts. “Our field is booming,” Giera states. “The Lab has a stake in the...
WiDS Livermore conference attendees network, share research and absorb wisdom
March 27, 2024 -
Co-sponsored by the DSI, LLNL on March 13 hosted the 7th annual Women in Data Science (WiDS) conference for data scientists, industry professionals, recent graduates and others interested in the field. As an independent satellite of the global WiDS conference celebrating International Women’s Day, the Livermore hybrid event was held to highlight the work and careers of LLNL and regional data...
Register for WiDS Livermore on March 13
Feb. 8, 2024 -
The annual Women in Data Science (WiDS) conference returns on Wednesday, March 13. This is the seventh year for WiDS Livermore, which is independently organized by LLNL to be part of the mission to increase participation of women in data science and to feature outstanding women doing outstanding work. The all-day WiDS Livermore event is free and will be presented in a hybrid format. Everyone...
Will it bend? Reinforcement learning optimizes metamaterials
Dec. 13, 2023 -
Lawrence Livermore staff scientist Xiaoxing Xia collaborated with the Technical University of Denmark to integrate machine learning (ML) and 3D printing techniques. The effort naturally follows Xia’s PhD work in materials science at the California Institute of Technology, where he investigated electrochemically reconfigurable structures. In a paper published in the Journal of Materials...
For better CT images, new deep learning tool helps fill in the blanks
Nov. 17, 2023 -
At a hospital, an airport, or even an assembly line, computed tomography (CT) allows us to investigate the otherwise inaccessible interiors of objects without laying a finger on them. To perform CT, x-rays first shine through an object, interacting with the different materials and structures inside. Then, the x-rays emerge on the other side, casting a projection of their interactions onto a...