Did you know we have a monthly newsletter? View past volumes and subscribe.
LLNL researchers unleash machine learning in designing advanced lattice structures
Aug. 22, 2024 -
Characterized by their intricate patterns and hierarchical designs, lattice structures hold immense potential for revolutionizing industries ranging from aerospace to biomedical engineering, due to their versatility and customizability. However, the complexity of these structures and the vast design space they encompass have posed significant hurdles for engineers and scientists, and...
LLNL, DOD, NNSA dedicate Rapid Response Laboratory and supercomputing system to accelerate biodefense
Aug. 15, 2024 -
LLNL recently welcomed officials from the Department of Defense (DOD) and National Nuclear Security Administration (NNSA) to dedicate a new supercomputing system and Rapid Response Laboratory (RRL). DOD is working with NNSA to significantly increase the computing capability available to the national biodefense programs. The collaboration has enabled expanding systems of the same architecture...
Probing carbon capture, atom-by-atom
July 31, 2024 -
A team of scientists at LLNL has developed a machine-learning model to gain an atomic-level understanding of CO2 capture in amine-based sorbents. This innovative approach promises to enhance the efficiency of direct air capture (DAC) technologies, which are crucial for reducing the excessive amounts of CO2 already present in the atmosphere. The low cost of these sorbents has enabled several...
AI, fusion, and national security with Brian Spears (VIDEO)
July 13, 2024 -
This episode of the Eye on AI podcast delves into the cutting-edge world of AI and high-performance computing with Brian Spears, director of LLNL's AI Innovation Incubator. The episode is presented here as a video with the following description: "Brian shares his experience in driving AI into national security science and managing the nation’s nuclear stockpile. With a PhD in mechanical...
The surprising places you’ll find machine learning (VIDEO)
June 20, 2024 -
LLNL data scientists are applying ML to real-world applications on multiple scales. A new DSI-funded video highlights research at the nanoscale (developing better water treatment methods by predicting the behavior of water molecules under the extremely confined conditions of nanotubes); mesoscale (determining the likelihood and location of a dangerous wildfire-causing phenomenon called arcing...
Statistical framework synchronizes medical study data
June 3, 2024 -
The risks and benefits of heart surgery, chemotherapy, vaccination, and other medical treatments can change based on the time of day they are administered. These variations arise in part due to changes in gene expression levels throughout the 24-hour day-night cycle, with around 50% of genes displaying oscillatory behavior.
To evaluate new therapies, investigators study how a gene’s...
Manufacturing optimized designs for high explosives
May 13, 2024 -
When materials are subjected to extreme environments, they face the risk of mixing together. This mixing may result in hydrodynamic instabilities, yielding undesirable side effects. Such instabilities present a grand challenge across multiple disciplines, especially in astrophysics, combustion, and shaped charges—a device used to focus the energy of a detonating explosive, thereby creating a...
Harnessing the power of AI for a safe and secure future (VIDEO)
May 13, 2024 -
LLNL, alongside the Department of Energy’s (DOE’s) 17 national labs, is harnessing the transformative potential of AI for a safer, more secure future. In 2022, LLNL made history by achieving fusion ignition, marking a pivotal moment for national security and clean energy. While AI continues to unlock new insights into fusion, through the combination of cutting-edge computer modeling...
Accelerating material characterization: Machine learning meets X-ray absorption spectroscopy
May 10, 2024 -
LLNL scientists have developed a new approach that can rapidly predict the structure and chemical composition of heterogeneous materials. In a new study in ACS Chemistry of Materials, Wonseok Jeong and Tuan Anh Pham developed a new approach that combines machine learning with X-ray absorption spectroscopy (XANES) to elucidate the chemical speciation of amorphous carbon nitrides. The research...
Igniting scientific discovery with AI and supercomputing (VIDEO)
April 15, 2024 -
LLNL’s fusion ignition breakthrough, more than 60 years in the making, was enabled by a combination of traditional fusion target design methods, high-performance computing (HPC), and AI techniques. The success of ignition marks a significant milestone in fusion energy research, and was facilitated in part by the precision simulations and rapid experimental data analysis only possible through...
Predicting climate change impacts on infrastructure (VIDEO)
Feb. 26, 2024 -
At LLNL, electrical grid experts and climate scientists work together to bridge the gap between infrastructure and climate modeling. By taking weather variables such as wildfire, flooding, wind, and sunlight that directly impact the electrical grid into consideration, researchers can improve electrical grid model projections for a more stable future. In a new video, LLNL computer scientist...
Machine learning tool fills in the blanks for satellite light curves
Feb. 13, 2024 -
When viewed from Earth, objects in space are seen at a specific brightness, called apparent magnitude. Over time, ground-based telescopes can track a specific object’s change in brightness. This time-dependent magnitude variation is known as an object’s light curve, and can allow astronomers to infer the object’s size, shape, material, location, and more. Monitoring the light curve of...
Will it bend? Reinforcement learning optimizes metamaterials
Dec. 13, 2023 -
Lawrence Livermore staff scientist Xiaoxing Xia collaborated with the Technical University of Denmark to integrate machine learning (ML) and 3D printing techniques. The effort naturally follows Xia’s PhD work in materials science at the California Institute of Technology, where he investigated electrochemically reconfigurable structures. In a paper published in the Journal of Materials...
For better CT images, new deep learning tool helps fill in the blanks
Nov. 17, 2023 -
At a hospital, an airport, or even an assembly line, computed tomography (CT) allows us to investigate the otherwise inaccessible interiors of objects without laying a finger on them. To perform CT, x-rays first shine through an object, interacting with the different materials and structures inside. Then, the x-rays emerge on the other side, casting a projection of their interactions onto a...
Lab partners with new Space Force Lab
Nov. 14, 2023 -
LLNL subject matter experts have been selected by the U.S. Space Force to help stand up its newest Tools, Applications, and Processing (TAP) laboratory dedicated to advancing military space domain awareness (SDA). The Livermore team attended the October 26 kickoff in Colorado Springs of the SDA TAP lab’s Project Apollo technology accelerator, designed with an open framework to support and...
LLNL, University of California partner for AI-driven additive manufacturing research
Sept. 27, 2023 -
Grace Gu, a faculty member in mechanical engineering at UC Berkeley, has been selected as the inaugural recipient of the LLNL Early Career UC Faculty Initiative. The initiative is a joint endeavor between LLNL’s Strategic Deterrence Principal Directorate and UC national laboratories at the University of California Office of the President, seeking to foster long-term academic partnerships and...
UC Merced & UC Riverside tackle Data Science Challenge on ML-assisted heart modeling
Aug. 3, 2023 -
For the first time, students from the University of California (UC) Merced and UC Riverside joined forces for the two-week Data Science Challenge (DSC) at LLNL, tackling a real-world problem in machine learning (ML)-assisted heart modeling. Held in the Livermore Valley Open Campus’s newly remodeled University of California Livermore Collaboration Center from July 10-21, the event brought...
Explainable artificial intelligence can enhance scientific workflows
July 25, 2023 -
As ML and AI tools become more widespread, a team of researchers in LLNL’s Computing and Physical and Life Sciences directorates are trying to provide a reasonable starting place for scientists who want to apply ML/AI, but don’t have the appropriate background. The team’s work grew out of a Laboratory Directed Research and Development project on feedstock materials optimization, which led to...
Machine learning reveals refreshing understanding of confined water
July 24, 2023 -
LLNL scientists combined large-scale molecular dynamics simulations with machine learning interatomic potentials derived from first-principles calculations to examine the hydrogen bonding of water confined in carbon nanotubes (CNTs). They found that the narrower the diameter of the CNT, the more the water structure is affected in a highly complex and nonlinear fashion. The research appears on...
High-performance computing, AI and cognitive simulation helped LLNL conquer fusion ignition
June 21, 2023 -
For hundreds of LLNL scientists on the design, experimental, and modeling and simulation teams behind inertial confinement fusion (ICF) experiments at the National Ignition Facility, the results of the now-famous Dec. 5, 2022, ignition shot didn’t come as a complete surprise. The “crystal ball” that gave them increased pre-shot confidence in a breakthrough involved a combination of detailed...