
Multilevel Graph Coarsening with Applications
Benjamin Quiring, Northeastern University and Panayot Vassilevski, CASC, LLNL

Setting
Given a graph G with vertices V and edges E.
• Each edge e = (i, j) has a an edge weight aij
• Each vertex i has a (weighted) degree di =

∑
e=(i,j) aij

Note: aij < 0 is allowed, but di > 0 must hold.

Abstract
Goal: to generate a hierarchy of coarser graphs that maintain certain properties of the original graph by using
pairwise aggregation of strongly connected vertices and monitoring the modularity functional Q. After creating the
hierarchy, embed the graph in Rd in a multilevel fashion.
Results: The aggregation algorithm achieves higher maximum Q values than the state of the art, Louvain’s Algo-
rithm. Addtionally, we applied the aggregation to classification and algebraic multigrid methods, forming aggregates
that correspond to the dominant direction of the distcretized anisotropic diffusion operator.

Multilevel Graph Coarsening
Goal: Find a "balanced" partition {A} of G;
The coarse graph has vertices {A}, with the following values:

dA =
∑
i,j∈A

aij +
∑
i∈A

di aA,A′ =
∑

i∈A,j∈A′
aij αA = (dA +

∑
A′ aA,A′)
T

∈ (0, 1)

With
T =

∑
i,j

aij +
∑
i

di

We maximize the modularity functional Q:

Q = 1
T

∑
A

[
(1− αA)dA − αA

∑
A′
aA,A′

]
= 1
T

∑
A
dA −

∑
A
α2
A

Assign to each edge a score η, a surface-to-volume ratio between A and A′:

ηA,A′ =
aA,A′√
dAdA′

(1) or ηA,A′ = aA,A′ (log(d2
A + d2

A′))2 (1− αA)(1− αA′)
αAαA′

(2)

Algorithm: Multilevel Graph Coarsening

• Initialize each A = {i}, dA, aA,A′, and αA for each i. Initialize each ηA,A′ and sort.
• Take the maximum ηA,A′; merge aggregates A and B into a new aggregate C. Compute dC, aC,A′, and αC:

dC = dA + dB + 2aA,B aC,A′ = aA,A′ + aB,A′ αC = αA + αB

• Recompute ηA,A′ and update Q. If Q had reached a maximum and has now started decreasing, create a
partition.

• Iterate until there are no more edges, and return the heirarchy of partitions.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Application: Embedding in Rd

Using the hierarchy of coarser graphs, embed G in the unit d-cube ⊂ Rd for a given d.
Given an embedding for the coarsest level graph, move coarse-to-fine to assign coordinates to the fine-level vertices.
Assume: Each A has coordinates xA = (xAk)dk=1 ∈ Rd.
Goal: Assign to each i a coordinate vector xi = (xi,k)dk=1 ∈ Rd maintaing well-separated aggregate structure.
For given initial values of xi = (xi,k)dk=1 and a radius rAk for each coarse vertex A and dimension k, we run over each
vertex i and any fixed k = 1, . . . , d and apply the minimization process:

Jloc(t) =
∑

j: e=(i,j)

1
|t− xj,k|

+ 1
xAk + rAk − t

+ 1
t− xAk + rAk

7→ min,

for values of t such that 0 < xAk − rAk < t < xAk + rAk < 1.
Then using the value t = t∗ we set xi,k = t∗.

The coarse vertexices {A} at {xA} The finer vertices i ∈ A at {xi}, spread within the ball of
radius rA

Algorithm: Embedding in Rd

• Initialize xi,k = xAk + εi,kd
A
k , A : i ∈ A, k = 1, . . . , d, with εi,k ∈ (−1, 1) a random number.

• Loop over each i and each k = 1, . . . , d, minimizing Jloc(t) to update xi,k. Sort {xj,k}j: e=(i,j), xAk − dAk , and
xAk + dAk , and let these be m + 2 in total. Then we have

0 < xj0,k = xAk − dAk < xj1,k ≤ · · · < xjs−1,k < xjs,k ≤ · · · < xjm+1,k = xAk + dAk < 1.

For each interval t ∈ (xjs−1,k, xjs,k), the functional Jloc(t) is convex and takes the form

Jloc(t) =
∑
r<s

1
t− xjr,k

+
∑
r≥s

1
xjr,k − t

.

Its derivative and second derivative are
dJloc
dt

= −
∑
r<s

1
(t− xjr,k)2 +

∑
r≥s

1
(xjr,k − t)2.

d2Jloc
dt2

= 2
∑
r<s

1
(t− xjr,k)3 + 2

∑
r≥s

1
(xjr,k − t)3 > 0.

Therefore the equation dJloc
dt = 0 has a unique solution t = t∗ in the interval t ∈ (xjs−1,k, xjs,k).

• Iterate until desired, and then recursively apply to the next level in the heirarchy until the finest level has
been embedded.

Acknowledgements
Stephan Gelever. https://github.com/gelever/linalgcpp/

Results and Other Applications
The partitioning algorithm achieved good results compared to the state of the art: Louvain’s algorithm, which
similarly monitors the modularity, Q.
• Our algorithm maximizes Q better in almost all cases.
• The number of aggregates at the coarsest level of the algorithm remain similar (an important consideration for
multilevel algorithms).

Maximum modularity Q of different ηA,A′ and Louvain’s algorithm on graphs of size |V |, |E|
35, 132 116, 1.2K 487, 4.4K 493, 3K 1.3K, 3K 1.8K, 18K 2.2K, 107K 14K, 763K 33K, 361K

ηA,A′ (1) 0.7454 0.7523 0.6165 0.7014 0.9345 0.4863 0.5964 0.5923 0.7147
ηA,A′ (2) 0.7373 0.7525 0.6253 0.7117 0.9368 0.5346 0.6246 0.6543 0.7489
Louvain 0.7337 0.6055 0.3367 0.5921 0.9056 0.1921 0.3517 0.4763 0.8055

Coarsest layer’s |{A}| of different ηA,A′ and Louvain’s algorithm on graphs of size |V |, |E|
35, 132 116, 1.2K 487, 4.4K 493, 3K 1.3K, 3K 1.8K, 18K 2.2K, 107K 14K, 763K 33K, 361K

ηA,A′ (1) 8 13 61 104 125 856 553 2249 4265
ηA,A′ (2) 6 13 30 65 124 37 40 51 67
Louvain 7 10 12 87 113 171 15 189 3907

We used aggregation for classification:
• Never merge two vertices with different labels
• Use the coarsest level to determine new labels

Unlabeled vertices (bright) with respect to a labeled
double spiral (dark)

Aggregation following the dominated direction (θ = π
6 ,

ε = 0.001) of the anisotropic diffusion operator.

The communities can also be used to help generate hierarchy of aggregates for use in algebraic multigrid (AMG).
In particular, our algorithm generates aggregates that follow dominated direction for discretized anisotropic diffusion
operator:

−div ((εI + bbT)∇u)

for small ε and b =
[

cos θ
sin θ

]
discretized using finite elements leading to non M-matrices.

Future Work

• Parallelization of aggregation via independent set
• Other multilevel algorithms (shortest path)

References

[N10] M.E.J. Newman, “Networks. An Introduction”, Oxford University Press, New York, 2010.
[1] P. S. Vassilevski, “Assigning Edge Weights in Graphs for Measuring Strength of Connectivity” Presentation at Portland State

University, 9 February 2015 (based on LLNL-PRES-663867).
[BAMGp] P. D’Ambra, S. Filippone, P. S. Vassilevski, “BootCMatch: a software package for bootstrap AMG based on graph weighted

matching,” ACM Transactions on Mathematical Software (TOMS) 44(4)(2018) Article No. 39,
https://dl.acm.org/citation.cfm?doid=3233179.3190647.

[BAMGs] P. D’Ambra, S. Filippone, P. S. Vassilevski, “Bootstrap AMG based on Compatible weighted Matching,”
https://github.com/bootcmatch/BootCMatch.

https://github.com/gelever/linalgcpp/
https://dl.acm.org/citation.cfm?doid=3233179.3190647
https://github.com/bootcmatch/BootCMatch

