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Drawbacks:
• The PDE solver is very expensive

(esp. if input is high
dimensional)

• Need thousands of forward
solves to obtain convergent
statistics
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Motivation

Random Field Random Solution

 PDE with spatially varying but uncertain coefficients. Want to
characterize uncertainty in the output using (e.g.) MC methods.

PDE Solver

Benefits:

 Trained surrogate is cheaper to
evaluate

 Outputs from the surrogate have
same distribution as outputs
from PDE solver

Random Field Random Solution

DNN 
Surrogate
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Presentation Notes
Idea: We want to solve a system of PDEs with spatially varying coefficients that introduce uncertainty in the problem. This uncertainty requires the coefficients of inputs to be modeled randomly according to some probability distribution; therefore, the output quantities of interest (QoI) will also be random values that follow some distribution. Given the random nature of the inputs/outputs, how can confidence in the QoI be characterized?Approach: use MC methods (e.g. MCMC) to compute sample statistics for the QoI. This approach requires many forward solves of the PDE in order to obtain convergent statistics. The PDE solver is prohibitively expensive to implement for large scale/high dimensional problems.GOAL: develop a SURROGATE model  to replace the PDE solver (must be cheaper to implement than original method). We use the expensive PDE solver to generate input/output data for the problem (random field inputs and corresponding random scalar outputs)Train a neural network on the input/output data via a supervised learning processReplace the PDE solver with the trained NN and use the trained NN to obtain values for QoI given many random field samples (hundreds of thousands or millions)If the input data follows the same probability distribution as that used to train the network, then the output data should follow the same probability distribution as the results obtained via the training process. Passing random field inputs through the trained model should allow sample outputs to be obtained much more quickly without sacrificing (much) accuracyAllows for convergent statistics to be more quickly obtained during MC analysis, opens door for acceleration of methods in Bayesian inference 



• Trained a convolutional neural network with fully connected layers
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Methods & Preliminary Results

2D Input Convolution, 
Pooling

Convolution, 
Pooling Fully Connected Layers

QoI

Q True Q Test Q Diff

Mean 1.0934 1.0770 0.01633

Median 1.0123 0.9937 0.01569

St. Dev 0.4817 0.4720 0.05225

Range 3.2711 3.0494 0.8074
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We started with 10,000 samples of 2D random fields that leads to scalar outputs Q (QoI)Basic architecture of the NN:Two consecutive convolutional layers with max pooling to down sample: Conv: 5x5 window, stride 1, 2 padding; Pool: 2x2 window, stride 2, 0 padding; channels 1  32  64Two consecutive convolutional layers without down sampling: Conv: 5x5 window, stride 1, 2 padding; channels 64  128  256One output layer with linear activation (input from conv layers flattened to have size 8x8x256 = 16,384 features, output has size 1)This approach (10 epochs, 10 000 training samples) had MSE = 0.0030***Previously used a deeper hidden NN and shallower convolutional layer (only 2 conv layers w/ down sampling that fed into twelve hidden layers (layer 1 has tanh active. fnc to compress values to range [-1,1]; layers 2-12 have swish activation w/ scaling parameter gamma=1) and one output layer (output has swish activation function w/ scaling parameter gamma=1)	 This approach (10 epochs, 10 000 training samples) had MSE = 0.0090***Statistics and skew of distribution is very similar in the two approaches, but the use of a deeper convolutional layer and a single layer output had a slightly better mean (1.0770) than the first model (1.1351) compared to the true output values.	Basic architecture for training: Loss measured with MSE, gradient updated with ADAM optimizer with learning rate=0.001, betas=(0.9,0.999) and no regularization of weightsThe data was divided into training, validation, and testing data sets 	***validation checks for overtraining, helps reduce variance in trained model;	*** training and validation sets were randomly shuffled before every epoch Final results come from model trained with only 20 epochsResults:Training and validation loss both of magnitude 1e-2Testing resulted in Q_test values that had one digit of accuracy Distribution of absolute error (Q_true-Q_test) between the Q test-results and Q true-values have summary stats:Mean  = 0.01633Median = 0.01569Range = 0.80742, lives in [-0.2904, 0.5170]St. Dev = 0.05225



• Apply the surrogate to problems with 3D random-field inputs
• Utilize DNN surrogates to accelerate Bayesian inference
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Future Work

Random 
Permeability Field

Random Velocity 
Field

DNN 
Surrogate
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Goals of this work is to accelerate simulation methods by using DNN surrogates. In particular, Use when the input is a 3D random field AND/ORThe uncertainty is very high dimensional AND/ORIncorporation into larger architecture for Bayesian inference such as ML-MCMC estimation



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States government or Lawrence Livermore National 
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States government or Lawrence Livermore National Security, LLC, and shall not 
be used for advertising or product endorsement purposes.


	DNN Surrogate for Solving PDES with Spatially Varying Coefficients
	Motivation
	Methods & Preliminary Results
	Future Work
	Slide Number 5

