Reinforcement Learning for Spacecraft in Stochastic Environments

Jordan Murphy
Computing/DSSI
Jason Bernstein
Michael Schneider
Stochastic Environments

- **Stochastic Differential Equations (SDE)**
 \[dX = f(X(t))dt + g(X(t))dW(t) \]

- **Mountain Car**
 \[d\vec{r} = \vec{v} \]
 \[d\vec{v} = \vec{a}_{grav} + \frac{\vec{u}}{m} + \sigma dW(t) \]

- **Orbits**
 \[d\vec{r} = \vec{v} \]
 \[d\vec{v} = \frac{\mu}{r^3} \vec{r} + \vec{a}_{pert} + \frac{\vec{u}}{m} + \sigma dW(t) \]
Reinforcement Learning

- Agent Seeks to Accumulate Reward

- Bellman Function

$$V^\pi = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, a)V^{\pi^*}(s')$$
Conclusions & Future Work

• Noisy Environments
 • Stochastic Value Gradient (Heess et al., 2015)

• Sparse Rewards
 • Potential-Based Reward Shaping
 • $F(s, a, s') = \gamma \phi(s') - \phi(s)$

• Reward Design in Orbital Environment
 • Keplerian vs. Cartesian

• Future Work
 • More Realistic & Complex Orbit Environment
 • Augmented Experience Replay
 • Incorporating Approximations of Fokker-Planck