
LLNL-PRES-813157
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Embedding-Based Node Clustering in 
Temporal Interaction Networks

Adriana M. Ortiz Aquino
Computing/DSSI

Mentor: Goran Konjevod



• Radoslaw email dataset [1]

• It contains 167 nodes and 82.9K edges, where an edge represents and email exchange
between two employees and each edge has a time attribute which corresponds to the
timestamp the email was sent (57K unique emails)

• Period covered is from January 1, 2010 to September 30, 2010

• It is also accompanied by the graph representing organizational hierarchy showing
who supervises whom (without positions) [2]
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The plot represents a snapshot of the first 10 unique timestamps (emails sent) in the graph. It shows how at time t_1 a node sent one email to 16 other employees. A different employee then sent an email to someone else at time t_2 and then emailed again at time t_3, and so on. 

https://doi.org/10.7910/DVN/6Z3CGX


• Continuous-Time Dynamic Network Embedding (CTDNE) [3] learns a
time dependent network representation for a temporal interaction
network 𝐺𝐺 = (𝑉𝑉,𝐸𝐸𝑇𝑇 , 𝜏𝜏)

• Learns a temporal embedding by searching over the space of temporal random
walks that obey time

• Example: A random walk from node 𝑣𝑣𝑖𝑖1to 𝑣𝑣𝑖𝑖𝐿𝐿+1
𝑣𝑣𝑖𝑖1 , 𝑣𝑣𝑖𝑖2 , 𝑡𝑡𝑖𝑖1 , 𝑣𝑣𝑖𝑖2 ,𝑣𝑣𝑖𝑖3 , 𝑡𝑡𝑖𝑖2 , … , 𝑣𝑣𝑖𝑖𝐿𝐿 , 𝑣𝑣𝑖𝑖𝐿𝐿+1 , 𝑡𝑡𝑖𝑖𝐿𝐿

where 𝑡𝑡𝑖𝑖1 < 𝑡𝑡𝑖𝑖2 < ⋯ < 𝑡𝑡𝑖𝑖𝐿𝐿
• Walks are biased towards edges that appear closer in time, i.e., the

walks represent a (possible) chain of emails in a week
• This is achieved using an exponential bias where given an arbitrary edge
𝑒𝑒 = (𝑢𝑢, 𝑣𝑣, 𝑡𝑡), each temporal neighbor 𝑤𝑤 ∈ 𝛤𝛤𝑡𝑡(𝑣𝑣) has probability of being
selected given by

Pr 𝑤𝑤 = exp − 𝜏𝜏 𝑤𝑤 − 𝜏𝜏 𝑣𝑣
∑𝑤𝑤′∈𝛤𝛤𝑡𝑡(𝑣𝑣) exp − 𝜏𝜏 𝑤𝑤′ − 𝜏𝜏 𝑣𝑣
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Time-Respecting Node Embedding 

[3] Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., & Kim, S. (2018, April). Continuous-time dynamic network embeddings. In
Companion Proceedings of the The Web Conference 2018 (pp. 969-976).
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• Used Gaussian Mixture Model [4] to cluster the temporal embedding obtained
from CTDNE

• The clusters assign nodes based on
structural equivalence [5] which
implies that the organization of the
nodes is based on hierarchical roles
in the network
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[4] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. the Journal
of machine Learning research, 12, 2825-2830.
[5] Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75-174.
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The plot on the left is the adjacency matrix of the graph (with a log transformation applied) to visualize the sizes of the clusters and how the nodes in each cluster interact with each other. The plot on the right is the organizational hierarchy showing employees and who they report to. The plot on the right shows that most of the nodes with label 4 (orange) are leaves in the graph, furthermore they have a within cluster density of 0.266, which implies they are not highly connected within each other. Also, cluster 1 (yellow) again shows nodes that are leaves but these have a within cluster density of 0 and they all are characterized by either receiving or sending just one email in the whole timeline. Other within cluster density values are: label 0 – 0.671, label 1 – 0, label 2 – 0.496, label 3 – 0.5, label 4 – 0.266 and label 5 – 0.5. 
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