
LLNL-PRES-806067

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Collaborative Autonomy Work in E-Program

March 2, 2020
Alyson Fox

Skynet & Improvements to Distributed Iterative Linear Solvers

LLNL-PRES-806067
2

 In many real-world settings, we need to
perform computation on hardware that is
not reliable. This hardware could
— Be delayed, fail, suffer a cyber intrusion, etc.

 Especially true in sensor-based control
systems.
— Power grids
— Gas pipelines
— Drone swarms

 In that sort of an unreliable environment,
without even a reliable central controller,
how do you enable computations that are
reliable?

Computing in an Unreliable Environment

LLNL-PRES-806067
3

 Decentralized devices: A cluster of (usually)
small computers with no control center.

 Autonomous: Without direction from a human
or central controller.

 Reliable Systemic Computation: The system as
a whole can withstand problems in any given
device (or group of devices) and still perform its
task.

Collaborative Autonomy

A class of computational methods that enables
groups of decentralized devices to work
together autonomously to adapt around
instabilities in order to create reliable systemic
computation out of unreliable hardware.

Presenter
Presentation Notes
Image on the right shows a visual comparison between a centralized control structure, which has a clear single point of failure and is therefore brittle, and a CA-based control structure, in which one could remove any device and the system will remain connected.

LLNL-PRES-806067
4

 Flocks of birds.

 Ant colonies.

 Animal herds.

 Multicellular biology.

 In all of these systems, damaging or removing one (or several)
individuals doesn’t compromise the whole, which is able to act
as a unit to make decisions and take actions.

Collaboratively Autonomy is Common in Nature

Presenter
Presentation Notes
These are all examples in which you could remove one (or several) animals/cells without really affecting the function of the system as a whole.
Pictures are of a flock of birds, a herd of penguins (or is it a flock of penguins?), and a slime mold.
Slime molds are a really interesting example of natural CA; they are unicellular organisms that during times of food scarcity come together to form large structures. Experiments show them collaboratively constructing efficient nutrient transportation networks and solving other surprisingly-complex problems.

LLNL-PRES-806067
5

 Skynet is a library of techniques that can be applied across a wide range of
collaborative autonomy problems

 It provides computational building blocks that have strong resilience
properties, enabling programs built with those blocks to have that same
resilience.

 Also provides an easy-to-use interface so that the user does not need to be a
collaborative autonomy expert.

The Skynet Software Architecture

A software platform to enable collaborative autonomy

In other words…….it is a
Numerical Linear Algebra Package for Unreliable Computing Environments

Presenter
Presentation Notes
Worth noting that “easy-to-use”, at least at this point, still requires some C++ chops. Someone who knows C++ but doesn’t really know CA, though, can use it.

LLNL-PRES-806067
6

When no single component is
reliable, even simple operations

become nontrivial.

Why Do We Need Collaborative Autonomy?

LLNL-PRES-806067
7

 Every agent (e.g. smart sensor) has a piece of data to include in the average.
 Every agent not malfunctioning should have the answer.
 Which agent does the actual calculation? Is it shared somehow? What kind of

communication is needed?

EXAMPLE: Decentralized Averaging

x1

xN x2

x3

x4

x5

x6

Is the technique robust
to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

LLNL-PRES-806067
8

 Which device does the actual calculation? Is it a group of devices? What kind of
communication is needed?

 Simplest idea: Send to some device, perform average, broadcast.

EXAMPLE: Decentralized Averaging

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

LLNL-PRES-806067
9

 Another idea: Send to two devices, replicate computation?

Decentralized Averaging

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

LLNL-PRES-806067
10

 Idea of Push Sum Method
— Initialization: Each agent has its own value and a

weight
Iterate Till Converged:
— Communication: Each agent broadcasts its current

value of the average and weight to all local
neighbors

— Update: Each agent updates its current value of the
average using information it has received

 Resiliency: Use counters to keep track of the
total mass sent by itself to its neighbors, to
mitigate connection/device failures.

Decentralized Averaging, Push-Sum Consensus
Olshevky et. al. (2018)

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

LLNL-PRES-806067
11

 Every “node” is actually k physical agents replicating computation,
recipients verify.

Decentralized Averaging, Push-Sum Consensus with
Calculation Validation

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

Presenter
Presentation Notes
Each blue node in the graph is now a “computational node” consisting of more than one physical agent. If we zoom in on the computational node we see k purple physical agents. Each agent does the same calculation and they all send their results to any recipients, who verify that they agree.
There are a few extra steps here involving Byzantine consensus protocols that I don’t need to go into.

LLNL-PRES-806067
12

 If you know nothing about your data, Jon
Snow, you cannot validate the data.

 In real applications, you can draw from
context:
— Historical context.
— Systemic context.
— Domain context.

 It is almost always possible to design a data
validation procedure using context.
— Can vary in sophistication.
— Strong systemic and historical context can enable

automatic machine learning methods.

 There is no one-size-fits-all procedure.

Validating Source Data: How?

Presenter
Presentation Notes
Need a quick discussion on this before bringing it back to our averaging discussion.

LLNL-PRES-806067
13

 Our contribution: Apply 𝑓𝑓−1 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑓𝑓(𝑥𝑥𝑖𝑖) , where 𝑓𝑓 𝑥𝑥 =

arcsin 𝑥𝑥 to mitigate effects of outliers with calculation replication.

 Doesn’t alter “normal” data, minimizes impact of outliers. Trying to
significantly alter the resulting average will result in obviously-
unreasonable inputs.

 Location and scale parameters a and b learned from context.

Decentralized Averaging, Push-Sum Consensus with
Calculation Validation and Outlier-Robust Averaging

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

Presenter
Presentation Notes
Finally!

LLNL-PRES-806067
14

Current Work on Iterative Linear Solvers

• Many more “complicated” tasks often require a solution to a linear
system

• Traditional Distributed Method
• Decompose:
• Stationary Iterative solver:
• At each iterate, each compute node solves a smaller liner system

and broadcast the solution.
• Converges to the solution if the spectral radius of 𝑀𝑀−1𝑁𝑁 is less

than 1

Solve , where

= exact solution

LLNL-PRES-806067
15

 Synchronous Jacobi: 𝑀𝑀 = 𝐷𝐷(diagonal of A), 𝑁𝑁 = 𝐴𝐴 − 𝐷𝐷

Current Distributed Implementation

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

First working on variations to
resolve these issues!

LLNL-PRES-806067
16

 Asynchronous Jacobi:

• 𝑘𝑘𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼𝑗𝑗, where 𝐼𝐼𝑗𝑗 is a sequence of 𝑛𝑛 + 1 integers for the 𝑗𝑗th iteration
• Converges if 𝜌𝜌 |𝐷𝐷−1𝐴𝐴| < 1

• Redundancy:

Asynchronous Redundant Jacobi

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥5

𝑥𝑥4

• Each process is responsible for
updating and distributing several
components of the solution vector 𝑥𝑥.

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

LLNL-PRES-806067
17

Experiment 1: One process 10x slower than
every other process

• Setup: Stopping Criteria:

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ra
tio

 A
ve

ra
ge

 R
un

tim
e

Redundancy

Ratio of Async/Sync Average Runtime v. Redundancy

LLNL-PRES-806067
18

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ra
tio

 A
ve

ra
ge

 F
or

rw
ar

d
Er

ro
r

Redundancy

Ratio Async/Sync Average Forward Error v. Redundancy

Experiment 1: One process is 10x slower than
every other process

• Average Forward Error is computed using information from the results of each process: If
two or more process output information for the same component of x, the average of
that component is used.

LLNL-PRES-806067
19

 Skynet will enable users to use CA techniques with minimal
effort.

 Current work on robust variants of iterative linear solvers:
— We can now solve linear systems in unreliable networks where

synchronous calculations are infeasible.
— The results show that the error is significantly better than synchronous

Jacobi when facing delays from a single processor => can easily be
extrapolated to multiprocessor delays/failures.

 Future Work: Further algorithmic work needs to be done to
ensure resiliency in classic distributive algorithms.
— Very few algorithms exist as interest in unreliable computing

environment has only recently grown due to the growth of smart devices.

Summary

LLNL-PRES-806067
20

 We would like to thank E-program for all the support!

 Skynet /CA Developers:
— PI: Colin Ponce
— Adam Harter
— Chris Vogl
— Alyson Fox
— Katie Graham
— Corey McNeish

 Collaborations on CA Algorithms
— Aaron Barret & Dr. Agnieszka Miedlar (Kansas University)

 Funding Projects: TimeWarp, CS-DERMS, RobustDERMS,
Stargazer.

Acknowledgements

LLNL-PRES-806067
21

	Collaborative Autonomy Work in E-Program
	Computing in an Unreliable Environment
	Collaborative Autonomy
	Collaboratively Autonomy is Common in Nature
	The Skynet Software Architecture
	Why Do We Need Collaborative Autonomy?
	EXAMPLE: Decentralized Averaging
	EXAMPLE: Decentralized Averaging
	Decentralized Averaging
	Decentralized Averaging, Push-Sum Consensus�Olshevky et. al. (2018)
	Decentralized Averaging, Push-Sum Consensus with Calculation Validation
	Validating Source Data: How?
	Decentralized Averaging, Push-Sum Consensus with Calculation Validation and Outlier-Robust Averaging
	Current Work on Iterative Linear Solvers
	Current Distributed Implementation
	Asynchronous Redundant Jacobi
	Experiment 1: One process 10x slower than every other process�
	Experiment 1: One process is 10x slower than every other process�
	Summary
	Acknowledgements
	Slide Number 21

