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 In many real-world settings, we need to 
perform computation on hardware that is 
not reliable. This hardware could
— Be delayed, fail, suffer a cyber intrusion, etc.

 Especially true in sensor-based control 
systems.
— Power grids
— Gas pipelines
— Drone swarms

 In that sort of an unreliable environment, 
without even a reliable central controller, 
how do you enable computations that are 
reliable?

Computing in an Unreliable Environment
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 Decentralized devices: A cluster of (usually) 
small computers with no control center.

 Autonomous: Without direction from a human 
or central controller.

 Reliable Systemic Computation: The system as 
a whole can withstand problems in any given 
device (or group of devices) and still perform its 
task.

Collaborative Autonomy

A class of computational methods that enables 
groups of decentralized devices to work 
together autonomously to adapt around 
instabilities in order to create reliable systemic 
computation out of unreliable hardware.

Presenter
Presentation Notes
Image on the right shows a visual comparison between a centralized control structure, which has a clear single point of failure and is therefore brittle, and a CA-based control structure, in which one could remove any device and the system will remain connected.
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 Flocks of birds.

 Ant colonies.

 Animal herds.

 Multicellular biology. 

 In all of these systems, damaging or removing one (or several) 
individuals doesn’t compromise the whole, which is able to act 
as a unit to make decisions and take actions.

Collaboratively Autonomy is Common in Nature

Presenter
Presentation Notes
These are all examples in which you could remove one (or several) animals/cells without really affecting the function of the system as a whole.
Pictures are of a flock of birds, a herd of penguins (or is it a flock of penguins?), and a slime mold.
Slime molds are a really interesting example of natural CA; they are unicellular organisms that during times of food scarcity come together to form large structures. Experiments show them collaboratively constructing efficient nutrient transportation networks and solving other surprisingly-complex problems.
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 Skynet is a library of techniques that can be applied across a wide range of 
collaborative autonomy problems

 It provides computational building blocks that have strong resilience 
properties, enabling programs built with those blocks to have that same 
resilience.

 Also provides an easy-to-use interface so that the user does not need to be a 
collaborative autonomy expert.

The Skynet Software Architecture

A software platform to enable collaborative autonomy

In other words…….it is a
Numerical Linear Algebra Package for Unreliable Computing Environments 

Presenter
Presentation Notes
Worth noting that “easy-to-use”, at least at this point, still requires some C++ chops. Someone who knows C++ but doesn’t really know CA, though, can use it.
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When no single component is 
reliable, even simple operations 

become nontrivial.

Why Do We Need Collaborative Autonomy?
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 Every agent (e.g. smart sensor) has a piece of data to include in the average.
 Every agent not malfunctioning should have the answer.
 Which agent does the actual calculation? Is it shared somehow? What kind of 

communication is needed?

EXAMPLE: Decentralized Averaging
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Is the technique robust 
to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs
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 Which device does the actual calculation? Is it a group of devices? What kind of 
communication is needed?

 Simplest idea: Send to some device, perform average, broadcast.

EXAMPLE: Decentralized Averaging

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs
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 Another idea: Send to two devices, replicate computation?

Decentralized Averaging

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs
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 Idea of Push Sum Method
— Initialization: Each agent has its own value and a 

weight 
Iterate Till Converged: 
— Communication: Each agent  broadcasts its current 

value of the average and weight to all local 
neighbors

— Update: Each agent updates its current value of the 
average using information it has received

 Resiliency: Use counters to keep track of the 
total mass sent by itself to its neighbors, to 
mitigate connection/device failures. 

Decentralized Averaging, Push-Sum Consensus
Olshevky et. al. (2018)

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs



LLNL-PRES-806067
11

 Every “node” is actually k physical agents replicating computation, 
recipients verify.

Decentralized Averaging, Push-Sum Consensus with 
Calculation Validation

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

Presenter
Presentation Notes
Each blue node in the graph is now a “computational node” consisting of more than one physical agent. If we zoom in on the computational node we see k purple physical agents. Each agent does the same calculation and they all send their results to any recipients, who verify that they agree.
There are a few extra steps here involving Byzantine consensus protocols that I don’t need to go into.
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 If you know nothing about your data, Jon 
Snow, you cannot validate the data.

 In real applications, you can draw from 
context:
— Historical context.
— Systemic context.
— Domain context.

 It is almost always possible to design a data 
validation procedure using context.
— Can vary in sophistication.
— Strong systemic and historical context can enable 

automatic machine learning methods.

 There is no one-size-fits-all procedure.

Validating Source Data: How?

Presenter
Presentation Notes
Need a quick discussion on this before bringing it back to our averaging discussion.
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 Our contribution: Apply 𝑓𝑓−1 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑓𝑓(𝑥𝑥𝑖𝑖) , where 𝑓𝑓 𝑥𝑥 =

arcsin 𝑥𝑥 to mitigate effects of outliers with calculation replication.

 Doesn’t alter “normal” data, minimizes impact of outliers. Trying to 
significantly alter the resulting average will result in obviously-
unreasonable inputs.

 Location and scale parameters a and b learned from context.

Decentralized Averaging, Push-Sum Consensus with 
Calculation Validation and Outlier-Robust Averaging

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

Presenter
Presentation Notes
Finally!
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Current Work on Iterative Linear Solvers 

• Many more “complicated” tasks often require a solution to a linear 
system

• Traditional Distributed Method 
• Decompose:
• Stationary Iterative solver:
• At each iterate, each compute node solves a smaller liner system 

and broadcast the solution. 
• Converges to the solution if the spectral radius of 𝑀𝑀−1𝑁𝑁 is less 

than 1

Solve                     , where 

= exact solution 
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 Synchronous Jacobi: 𝑀𝑀 = 𝐷𝐷(diagonal of A), 𝑁𝑁 = 𝐴𝐴 − 𝐷𝐷

Current Distributed Implementation

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs

First working on variations to 
resolve these issues! 
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 Asynchronous Jacobi:

• 𝑘𝑘𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼𝑗𝑗, where 𝐼𝐼𝑗𝑗 is a sequence of  𝑛𝑛 + 1 integers for the 𝑗𝑗th iteration
• Converges if 𝜌𝜌 |𝐷𝐷−1𝐴𝐴| < 1

• Redundancy: 

Asynchronous Redundant Jacobi

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥5

𝑥𝑥4

• Each process is responsible for 
updating and distributing several 
components of the solution vector 𝑥𝑥. 

Robust to…
Device failure
Network link failure
Scalability
Calculation compromise
Source data compromise
Network Knowledge Needs
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Experiment 1: One process 10x slower than 
every other process

• Setup: Stopping Criteria:
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Experiment 1: One process is 10x slower than 
every other process

• Average Forward Error is computed using information from the results of each process: If 
two or more process output information for the same component of x, the average of 
that component is used.  
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 Skynet will enable users to use CA techniques with minimal 
effort. 

 Current work on robust variants of iterative linear solvers:
— We can now solve linear systems in unreliable networks where 

synchronous calculations are infeasible. 
— The results show that the error is significantly better than synchronous 

Jacobi when facing delays from a single processor => can easily be 
extrapolated to multiprocessor delays/failures. 

 Future Work: Further algorithmic work needs to be done to 
ensure resiliency in classic distributive algorithms. 
— Very few algorithms exist as interest in unreliable computing 

environment has only recently grown due to the growth of smart devices. 

Summary
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 Skynet /CA Developers: 
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— Katie Graham
— Corey McNeish
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— Aaron Barret & Dr. Agnieszka Miedlar (Kansas University)  
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