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Abstract

We are solving nonlinear equations where only the action of the
nonlinear mapping and its Jacobians are computationally available.
The solution algorithm is a standard two-level full approximation
scheme (FAS) multigrid. A coarse counterpart of the nonlinear

mapping is constructed utilizing suitable deep neural networks
(DNNSs).

l. Problem Formulation

Given the system of nonlinear equations
F(u) =f, (1)
where F: R" - R", and we have access only to its actions. We also assume

that for any u and g € R", J-(u)g € R™ where J is the Jacobian.

A standard approach for solving (1) is the Inexact Newton method as below:

Algorithm 1 (Inexact Newton)
For a current approximation u of (1), we perform the iterative process:
 Compute theresidual r = f — F(u)

 Find y,, by performing m iterations of the GMRES? that approximately
solves

myinllr — Jr(u)y]|
« Updateu=u+y,,.
a GMRES: Generalized minimal residual.

Il. Full Approximation Scheme (FAS)

a) The FAS

We are interested in the two-level FAS algorithm for solving (1). We define a
coarse version of F, F.: R" —» R", for some n. <n and its Jacobian
Jc = Jr,- To communicate between the fine level, R™ and the coarse level, R"¢,

we introduce two linear mappings:
« Coarse-to-fine mapping P : R"% —» R" .
* Fine-to-coarse projection 7 : R® - R"c such that nP = 1.

For u, and g, € R"c, the standard approximation for F. and J. are P'F(Pu,)

and P'J.(Pu.)Pg., respectively.

Algorithm 2 ( Two-level FAS)

For the current approximation u of (1), the two-level FAS method performs :

« Compute y,, using Algorithm 1 and let u1 = u + y,,.
3

* Form the coarse-level nonlinear problem for u,
Fc(uc) =fc=F (T[ul)_l'PT(f_F(ul))- (2)
3 3

Solve (2) using Algorithm 1 with the coarse Jacobian, and u, := mua.
3
» Update fine-level approximation uz = u1 + P’ (u, — mu1).
3 3 3

* Repeat the FAS cycle starting with u := u.

3

b) Our choice for F,

For a given P, we train a DNN which takes any coarse vector v, € R"¢ and
produces P'F(Pv.) € R™. The trained this way DNN gives the action of our
coarse nonlinear mapping E.(.).

lll. Numerical Example

Given the nonlinear PDE
V- (k(w)Vu) +u=fonQ
and Vu-n =0 on dQ. (3)
Here, O c R%.
The variational formulation for (3) is:
J, (t)VuVv +uv)dx = | fvdxforu,v € H'.

Figure 1: An example of coarse mesh and fine mesh for problem (3).

This form is discretized by the Finite Element Method.

We use 2 layers with n. hidden nodes (denoted by N) at each layer along with
10000 training examples. Here, n = 9 and n,. = 4.
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Figure 2: A visualization of solutions on the fine level with n = 9.

y . .Y .

()
\ 1 ¢
1 0 1 — 0

1

H_ 0.100 1

1 0.075

4 0.050 0

0.025
0.000

Solution from FAS
Figure 3: A visualization of solutions on the fine level with n = 15.

True solution

Nulranylc:; of Testing accuracy Validation accuracy

4 0.5744 0.5760 0.5620
8 0.5125 0.5055 0.5400
4 0.7528 0.7540 0.7230
8 0.9608 0.9560 0.9680
4 0.9435 0.9530 0.9433
8 0.9634 0.9389 0.9216

Table 4. Comparison between neural network structures.
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Figure 5: Accuracy and Loss (log scale) graphs using 100 epochs

Model accuracy Model loss
e 5 — .Tr'raitn
0.8 w— OS5
—6 1
0.6 1
o -7 1
© A
S 04 - -
§° 5
0.2 g -
' w—Train \
004 ° w— Test -10 A (S — —
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Epoch Epoch

Figure 6: Accuracy and Loss (log scale) graphs using 500 epochs
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Figure 7: Relative error between true solution and FAS solution with n,. = 4.

Fo(ue) — F o ()| 2 min 1.5076e-06

Fo(uc) — Fopp (e || 2 max 4.9307e-06

Fo(uc) — F,yyn(uc)|| 2 average  3.4557e-06

F.(u.) — FCDNN(uC) » average 8.5480e-06

Table 8: Error norms between the nonlinear operator and its approximation over 1000 examples.

V. Conclusion & Future Work

* We replace the nonlinear operator with the neural network approximations.
* |Improve the networks to compute F_ on the coarse level more efficiently.

 The approach is feasible on an element level and parallelizable.

Software

Python using FEnNICS and Keras.

References

1. Vassilevski, Panayot S. Multilevel block factorization preconditioners: Matrix-based analysis and algorithms for solving
finite element equations. Springer Science & Business Media, 2008.
2. Goodfellow, lan, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.



