Abstract

We are solving nonlinear equations where only the action of the nonlinear mapping and its Jacobians are computationally available. The solution algorithm is a standard two-level full approximation scheme (FAS) multigrid. A coarse counterpart of the nonlinear mapping is constructed utilizing suitable deep neural networks (DNNs).

I. Problem Formulation

Given the system of nonlinear equations

F(u)=f,

where $F: \mathbb{R}^n \to \mathbb{R}^n$, and we have access only to its actions. We also assume that for any u and $g \in \mathbb{R}^n$, $J_F(\mathbf{u})g \in \mathbb{R}^n$ where J_F is the Jacobian.

A standard approach for solving (1) is the Inexact Newton method as below:

Algorithm 1 (Inexact Newton)

For a current approximation u of (1), we perform the iterative process:

- Compute the residual r = f F(u)
- Find y_m by performing m iterations of the GMRES^a that approximately solves

 $\min \|\boldsymbol{r} - J_F(\mathbf{u})\boldsymbol{y}\|$

• Update $u = u + y_m$.

^a GMRES: Generalized minimal residual.

II. Full Approximation Scheme (FAS) a) The FAS

We are interested in the two-level FAS algorithm for solving (1). We define a coarse version of F, $F_c: \mathbb{R}^{n_c} \to \mathbb{R}^{n_c}$, for some $n_c < n$ and its Jacobian $J_c = J_{F_c}$. To communicate between the *fine level*, \mathbb{R}^n and the *coarse level*, \mathbb{R}^{n_c} , we introduce two linear mappings:

- Coarse-to-fine mapping $P : \mathbb{R}^{n_c} \to \mathbb{R}^n$.
- Fine-to-coarse projection $\pi : \mathbb{R}^n \to \mathbb{R}^{n_c}$ such that $\pi P = I$.

For u_c and $g_c \in \mathbb{R}^{n_c}$, the standard approximation for F_c and J_c are $P^T F(P u_c)$ and $P^T J_F(P \boldsymbol{u_c}) P \boldsymbol{g_c}$, respectively.

Algorithm 2 (Two-level FAS)

For the current approximation u of (1), the two-level FAS method performs :

- Compute y_m using Algorithm 1 and let $u_1 = u + y_m$.
- Form the coarse-level nonlinear problem for u_c

$$F_c(\boldsymbol{u}_c) = \boldsymbol{f}_c \coloneqq F_c(\pi \boldsymbol{u}_{\underline{1}}) + P^T(\boldsymbol{f} - F(\boldsymbol{u}_{\underline{1}})).$$

Solve (2) using **Algorithm 1** with the coarse Jacobian, and $u_c \coloneqq \pi u_1$.

- Update fine-level approximation $u_{\underline{2}} = u_{\underline{1}} + P^T (u_c \pi u_{\underline{1}}).$
- Repeat the FAS cycle starting with $u \coloneqq u_2$.

Two-level FAS with Neural Networks for Coarse Operators

Tuyen Tran¹, Panayot Vassilevski² and Aidan Hamilton³ ¹ Portland State University, ^{2, 3} Lawrence Livermore National Laboratory/CASC

(1)

and

0.075

0.050

0.025

0.000

(2)

b) Our choice for F_c

For a given P, we train a DNN which takes any coarse vector $v_c \in \mathbb{R}^{n_c}$ and produces $P^T F(P v_c) \in \mathbb{R}^{n_c}$. The trained this way DNN gives the action of our coarse nonlinear mapping $F_c(.)$.

III. Numerical Example

Given the nonlinear PDE

 $-\nabla \cdot (k(u)\nabla u) + u = f \text{ on } \Omega$ $\nabla u \cdot \vec{n} = 0$ on $\partial \Omega$.

Here, $\Omega \subset \mathbb{R}^2$. The variational formulation for (3) is: $\int_{\Omega} (k(u)\nabla u\nabla v + uv)dx = \int_{\Omega} fvdx$ for $u, v \in H^1$.

Figure 1: An example of coarse mesh and fine mesh for problem (3).

This form is discretized by the Finite Element Method. We use 2 layers with n_c hidden nodes (denoted by N) at each layer along with 10000 training examples. Here, n = 9 and $n_c = 4$.

True solution Figure 2: A visualization of solutions on the fine level with n = 9

True solution Figure 3: A visualization of solutions on the fine level with n = 15.

Number of layers	N	Training accuracy	Testing accuracy	Validation accuracy
1	4	0.5744	0.5760	0.5620
1	8	0.5125	0.5055	0.5400
2	4	0.7528	0.7540	0.7230
2	8	0.9608	0.9560	0.9680
3	4	0.9435	0.9530	0.9433
3	8	0.9634	0.9389	0.9216

Table 4: Comparison between neural network structures.

(3)

Solution from FAS

Solution from FAS

IV. Conclusion & Future Work

Software

Python using FEniCS and Keras.

References

finite element equations. Springer Science & Business Media, 2008.

Lawrence Livermore National Laboratory

Error	Value
$-F_{c_{DNN}}(u_c)\ _2$ min	1.5076e-06
$-F_{c_{DNN}}(u_c)\ _2 \max$	4.9307e-06
$-F_{c_{DNN}}(u_c)\ _2$ average	3.4557e-06
$-F_{c_{DNN}}(u_c)\ _{\infty}$ average	8.5480e-06

• We replace the nonlinear operator with the neural network approximations. • Improve the networks to compute F_c on the coarse level more efficiently. • The approach is *feasible* on an element level and *parallelizable*.

1. Vassilevski, Panayot S. Multilevel block factorization preconditioners: Matrix-based analysis and algorithms for solving 2. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.