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Earth system models are our best tools for predicting future climate: that includes temperature, water resources, 
and extreme events. However, long model runs (1850-2100) take weeks to run on DOE supercomputers. Here, 
we show examples of how machine learning models can be integrated into existing physics-based models to 
produce better climate predictions at lower computational costs.

INTEGRATING ML AND PHYSICS MODELS

Learn more at climatechange.ai and:

LEARNING SEA ICE MODEL PARAMETERS

Extreme events

Challenge: Clouds are 
the biggest source of 
uncertainty in climate 
models, but cloud-
resolving models are 
prohibitively expensive

Opportunity: Train 
deep neural nets to 
emulate high-resolution 
cloud models2

Challenge: Disaster 
relief planners need 
storm and drought 
forecasts, but Earth 
system models predict 
average variables like 
wind speed and 
temperature

Opportunity: Build 
classifiers to identify 
extreme events within 
climate model datasets5

Clouds
Challenge: The climate 
is highly variable, and 
each model run only 
captures one of many 
possible futures

Opportunity: Optimize 
multi-model predictions 
using online1

Ensembles

Parameterization
Challenge: Earth 
System Models have 
many parameters, 
constrained by various 
forms of data and 
inverse modeling

Opportunity: Use 
machine learning 
regression to learn 
parameters from data7, 
and to integrate data 
into simulations3

And more:
Climate model super-resolution • Predicting 
model crashes online • Classifying land and 
cloud features from satellite imagery4 • 
Calibrating satellite observations3 • Adaptive 
numerical meshing8 • Using new polar data 

Sea ice increases the Earth’s reflectivity, and controls warming rates in Arctic and Antarctic ecosystems. Current 
models, however, over-estimate the loss of Antarctic sea ice cover9, and under-estimate ice loss in the Arctic6.

Simulated sea ice area and extent during perturbed parameter runs (N=70, blue) compared to 
CICE4 results with default values (red) and real data from year 2000 (black). All model runs 
were driven by a year 2000 atmospheric forcing with CAM4 on a slab ocean.

SIMULATED DATA
To explore the sources of uncertainty in CICE, the DOE’s leading sea ice model, we identified and perturbed 
the most uncertain parameters in CICE10 within a physics-constrained range.

SURROGATE MODEL
We used the ensemble to train a support vector machine (SVR) that approximates CICE output at ~one ten 
millionth the computational cost. Using the SVR, we sampled 2 million sets of parameters from a uniform prior 
distribution and evaluated their fit to the observed data from year 2000. 

Parameter Perturbation range
dT_melt_in Snow melt temperature 0.10 – 1.8 (1.5)
R_ice Ice grain radius tuning param. -1.9 – 1.9 (0.0)
R_pnd Pond grain radius tuning param. -1.9 – 1.9 (0.0)
R_snw Snow grain radius tuning param. -1.9 – 1.9 (1.5)
rsnw_melt_in Snow melt max. radius 500 – 1500 (1000)
ksno Snow thermal conductivity 0.1 – 0.35 (0.3)
mu_rdg Ridged ice folding scale 3 – 5 (4)

Above: Comparison of CICE and SVR surrogate predictions.

Right: comparison between SVR prediction and year 2000 data as a function of model 
parameters. Lower RMSE correlates with higher likelihood. Data points weigh both 
hemispheres (N and S) both variables (ice extent and area) and all 12 months  according to 
their interannual variability in years 1998-2002.

SVR prediction of ice area (million sq. km)
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Machine learning models may replace expensive parts of Earth System Models at lower cost

SEA ICE RESULTS
We find that (1) most physically-reasonable combinations of parameters produce lower sea ice concentrations 
than the default CICE configuration, which may be favorable for fitting Arctic sea ice data, (2) this 
configuration of CICE may be successfully approximated with a support vector machine surrogate at a far 
lower cost, and (3) the most likely values for ksno and r_snw are higher than the CICE defaults.
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