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Predicting conditions which lead to simulation failure generated 
using the Arbitrary Lagrangian-Eulerian (ALE) method allows 
users to take measures to avoid failure. In order to correctly 
predict these situations using machine learning algorithms, it is 
necessary to develop training labels which capture relevant 
information for classification.

PROBLEM DEVELOPMENT

A SIMPLE LABELING METHOD PREDICTION RESULTS
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ABSTRACT

Our aim is predicting the mesh elements that are at risk of 
crashing code for hydrodynamic simulations.
• Our data structure: 11,560 zones over 1000’s of cycles. 

• Zones are geometric sections of the mesh. (Fig. 3)
• Cycles capture snapshot-like progression of simulation but are not 

linearly related to time. (Fig. 3) 
• An observation, or zone and cycle combination, consists of the 

information in Fig. 1. 
• Mesh flows with simulated material motion and zone geometry may reach 

impossible values (e.g. Maximum Angle > 180º) leading to code failure (Fig. 2).
• Prediction of zones that will cause code failure allows for compensatory 

measures (e.g. mesh relaxation). 
• Code failure prediction algorithms are trained on zone geometries from 

100’s of simulations using many different environments.
• Algorithms require training labels for enormous amount of data. 

Proper labeling of training data is necessary 
for creating successful prediction models. 

• Label = 1: a zone that is a failure risk at a certain cycle (an observation). 
• Label = 0: a zone not posing a failure risk at a certain cycle. 

Fig. 3: BubbleShock central region at different points in time (cycle number). 
Colormap shows fluctuation of largest angle variable. 

Fig. 1: Information included in an 
observation for each zone and cycle. 

Problem 1. Cycles of failed zones far from failure should not be labeled 1. 

Currently, observation labels are based solely on whether a zone 
causes code failure (1 = cause failure, 0 = did not cause failure), 
and this simplicity creates mislabeling.
• Only observations within n = 650 cycles until failure are assigned 

label = 1. 

Problem 2. There are label = 0 that are code failure risks. 

Instead of applying label = 1 to only zones that crash the code,
base labeling on a distance metric of transformed variables.

• Linearize the 16 features with likelihood of mesh tangling.
• Scale variables according to influence on mesh tangling.
• Assign label = 1 to observations with this distance metric > threshold.

Figure 4 (right):
• Class 1 observations further 

from the failure point resemble 
class 0 and are mislabeled. 
Class 0 observations after point 
of failure should be class 1. 

• The left group should be all 
class 1 (pink), and the right 
should be all class 0 (blue).
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Class 0

CONCLUSIONS
• Training labels that capture more information about classes improve 

performance in machine learning classification predictions. 
• Future work involves exploring different transformation distance 

metrics.
• Additional computation is a potential limitation. However, once a 

framework is built, the new labeling takes little computing. 
• Training labels that do not clearly represent a class introduce a bias 

that mars the ability for an algorithm to properly predict future 
observations.

Fig. 2: Behavior of variable metrics for failed zones 
(in color) over cycles as they approach failure. 

OUR IMPROVED LABELING METHOD

• Labeling early causes the simulation to relax the mesh unnecessarily.
• Relaxation of mesh causes loss of physical accuracy of simulation.

• Labeling too late means the simulation did not relax the mesh soon enough to 
avoid mesh tangling.

• Mesh tangling can halt simulation progress. 

Cycle 4000
t = 44.10 µs

Cycle 4500
t = 48.40 µs

Cycle 5500
t = 52.80 µs

Cycle 5000
t = 51.25 µs

Figure 5 (right):
• Clearer separation of classes. 
• Minimizes both problems 1 and 

2 as explained in Fig. 4. 
• Black and brown bars show 

transformed scale. 

Figure 6 (below):
• Distance of observations 

labeled 1 by our new method 
from tangled observations.

• Our new method labels 
observations close to known fail 
risks as also a potential fail risk.

cycles until mesh tangling
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Problem 1

Problem 2
81% are class 0 (blue)

Obtained with Random Forest Classification
• Training data: observations sampled from speed=120, density=0.18 

simulations. 
• Testing data: observations from speed=160, density=0.22 simulations.
• Classification based on 400 fully-grown trees using 0.50 threshold.
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Fig. 7 (above): Left column displays true labels for test set by the default (top) and new (bottom) 
method. Right column shows predicted labels by each method respectively. 

Fig. 8 (above): Predicting zones which are known to have tangled by the simple and new method. 
The table shows proportion of predictions at various benchmarks for both simple and new methods.

simple new

Predicted with at least 
25 cycle lead time

51% 98%

Predicted at time of 
tangle event 

0.5% 2%

Predicted after event 23% 0
Never predicted 25.5% 0

Metric Metric
Area

Aspect Ratio
Condition
Distortion
Jacobian
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Minimum Angle

Oddy

Scaled Jacobian
Shape

Shape and Size
Shear

Shear and Size
Skew

Stretch
Taper

A classifier using data with new labeling method (bottom row)
improved class discrimination (left column) and prediction capabilities (right column)
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Simple Labeling Method

Predicted Class Labels
Simple Labeling Method
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Predicted Class Labels
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