ReSCAL (real-space cellular automaton laboratory) is a simulation software used to make geomorphic predictions of sand dunes using a simple cellular automata structure. These simulations require a vast amount of both computing time and memory. Here we train a GAN to make video predictions of the sand dune model at a certain time step, T.

SAND DUNE PREDICTIONS ARE COMPUTATIONALLY EXPENSIVE

Each cell is treated as a “doublet”, or a nearest neighbor cell, within the cell space.

- A 50 x 200 x 80 3D space takes 20 minutes to generate the predicted model at T_{500}.
- A 100 x 1800 x 200 3D space requires around 24 hours to generate the predicted model at T_{500}.

T_{500} is equivalent to the state of the model 13 days into the future.

SIMULATING SAND DUNE DATA

- Generate sand dune elevation values for a 3D model with dimensions 100 x 1800 x 200 until T_{500}
- Split each frame into 32 x 32 crops for training
- Train the GAN model to generate predictions of the next frame given the first four frames of the model

VIDEO PREDICTION USING A GAN

Generative Adversarial Networks

- Generator learns to create accurate predictions of the next frame given the past four frames
- Discriminator, or the “adversary”, learns to differentiate between “real” and “fake” frames
- The generator makes more accurate predictions of the next frame, attempting to “fool” the discriminator

PREDICTED FRAME F_5

- F_1, F_2, F_3, F_4, F_{gt}, F_{gen}

DISCUSSION/FUTURE WORK

- High level of abstraction when we treat this as a video prediction problem – we only train the model on the output at each time step
- Due to the inherent stochastic behavior of these sand dune models, the predictions will never be 100% accurate
- Compare the results for training the adversarial network and the non-adversarial network
- Train the model using images that contain a longer period of time in between each one in order to capture and predict more movement

REFERENCES

Contact: Jenna Horrall, horrall1@llnl.gov

Objective: Train a GAN to make accurate predictions of the sand dune model at F_5.
