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MOTIVATION
• In many domains we have an abundance of extremely long timeseries data
• Often this data is unlabeled, inconsistently labeled, or improperly labeled
• Often contains subtle and noisy information about recurring events
• Examples abound in medicine, seismology, the stock market, and cosmology

RESEARCH QUESTIONS
• Can we detect distinct subsequences in timeseries of a repeating event?
• Can we do this when events are temporally disparate?
• Is this possible using an unsupervised algorithm?
• If so, how do we know a detected event is meaningful?

DATA SET
• Waveforms collected from Geophones at 500Hz continuously over one year
• Three temporally distinct DAG experiments recorded at NNSS
• Data collection along three axes at 6 spatially separated stations
• Timeseries of roughly 15 billion samples per year per station per axis
• Potential events for detection are repeated activity surrounding experiments
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Figure 1: Example of raw signals along an axis. Rows correspond to individual stations and columns
correspond to a specific day (~43 million points per station). Notice how different they are.
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SINGLE-CHANNEL TSTS
Input:

• Fingerprint Similarity Network (G)
• Minimum sized sequence to constitute event (T )
• Threshold on initial “high similarity” matches (θ)
• Threshold on candidate triangles (τ )

1. Form thresholded adjacency list of G with a node’s neighbor included if and only if
their similarity is greater than θ

2. Recurrently search the resultant adjacency list for maximal length temporal se-
quences with greater than T “high similarity” adjacent node pairs. All such se-
quences are stored as a “potential event”

3. for each “potential event” do
4. for each “high similarity” pair in the “potential event” do
5. Create a list of nodes forming triangles in G with said pair. Only include

nodes with similarity greater than τ to both nodes in the “high similarity”
pair

6. Recurrently search the resultant lists for maximal length temporal sequences
with greater than T triangle forming nodes. All such sequences of triangles are
stored as a detected event

Output: Set of detected events and the ordered fingerprints found to be in each event

EXTENSIONS
• Multi-Station TSTS
• Ground Truth Query TSTS
• Temporally Sequential N-Clique Search

FUTURE DIRECTIONS
• Considering the multi-scale setting
• Incorporating network statistics to mitigate false detections
• Improvements by incorporating weighted variant of the “Onion Decomposition”
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